亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Laughter is a unique expression, essential to affirmative social interactions of humans. Although current 3D talking head generation methods produce convincing verbal articulations, they often fail to capture the vitality and subtleties of laughter and smiles despite their importance in social context. In this paper, we introduce a novel task to generate 3D talking heads capable of both articulate speech and authentic laughter. Our newly curated dataset comprises 2D laughing videos paired with pseudo-annotated and human-validated 3D FLAME parameters and vertices. Given our proposed dataset, we present a strong baseline with a two-stage training scheme: the model first learns to talk and then acquires the ability to express laughter. Extensive experiments demonstrate that our method performs favorably compared to existing approaches in both talking head generation and expressing laughter signals. We further explore potential applications on top of our proposed method for rigging realistic avatars.

相關內容

 3D是英文“Three Dimensions”的簡稱,中文是指三維、三個維度、三個坐標,即有長、有寬、有高,換句話說,就是立體的,是相對于只有長和寬的平面(2D)而言。

Multimedia generation approaches occupy a prominent place in artificial intelligence research. Text-to-image models achieved high-quality results over the last few years. However, video synthesis methods recently started to develop. This paper presents a new two-stage latent diffusion text-to-video generation architecture based on the text-to-image diffusion model. The first stage concerns keyframes synthesis to figure the storyline of a video, while the second one is devoted to interpolation frames generation to make movements of the scene and objects smooth. We compare several temporal conditioning approaches for keyframes generation. The results show the advantage of using separate temporal blocks over temporal layers in terms of metrics reflecting video generation quality aspects and human preference. The design of our interpolation model significantly reduces computational costs compared to other masked frame interpolation approaches. Furthermore, we evaluate different configurations of MoVQ-based video decoding scheme to improve consistency and achieve higher PSNR, SSIM, MSE, and LPIPS scores. Finally, we compare our pipeline with existing solutions and achieve top-2 scores overall and top-1 among open-source solutions: CLIPSIM = 0.2976 and FVD = 433.054. Project page: //ai-forever.github.io/kandinsky-video/

Users in many domains use machine learning (ML) predictions to help them make decisions. Effective ML-based decision-making often requires explanations of ML models and their predictions. While there are many algorithms that explain models, generating explanations in a format that is comprehensible and useful to decision-makers is a nontrivial task that can require extensive development overhead. We developed Pyreal, a highly extensible system with a corresponding Python implementation for generating a variety of interpretable ML explanations. Pyreal converts data and explanations between the feature spaces expected by the model, relevant explanation algorithms, and human users, allowing users to generate interpretable explanations in a low-code manner. Our studies demonstrate that Pyreal generates more useful explanations than existing systems while remaining both easy-to-use and efficient.

Error correction in automatic speech recognition (ASR) aims to correct those incorrect words in sentences generated by ASR models. Since recent ASR models usually have low word error rate (WER), to avoid affecting originally correct tokens, error correction models should only modify incorrect words, and therefore detecting incorrect words is important for error correction. Previous works on error correction either implicitly detect error words through target-source attention or CTC (connectionist temporal classification) loss, or explicitly locate specific deletion/substitution/insertion errors. However, implicit error detection does not provide clear signal about which tokens are incorrect and explicit error detection suffers from low detection accuracy. In this paper, we propose SoftCorrect with a soft error detection mechanism to avoid the limitations of both explicit and implicit error detection. Specifically, we first detect whether a token is correct or not through a probability produced by a dedicatedly designed language model, and then design a constrained CTC loss that only duplicates the detected incorrect tokens to let the decoder focus on the correction of error tokens. Compared with implicit error detection with CTC loss, SoftCorrect provides explicit signal about which words are incorrect and thus does not need to duplicate every token but only incorrect tokens; compared with explicit error detection, SoftCorrect does not detect specific deletion/substitution/insertion errors but just leaves it to CTC loss. Experiments on AISHELL-1 and Aidatatang datasets show that SoftCorrect achieves 26.1% and 9.4% CER reduction respectively, outperforming previous works by a large margin, while still enjoying fast speed of parallel generation.

As Large Language Models (LLMs) have made significant advancements across various tasks, such as question answering, translation, text summarization, and dialogue systems, the need for accuracy in information becomes crucial, especially for serious financial products serving billions of users like Alipay. To address this, Alipay has developed a Retrieval-Augmented Generation (RAG) system that grounds LLMs on the most accurate and up-to-date information. However, for a real-world product serving millions of users, the inference speed of LLMs becomes a critical factor compared to a mere experimental model. Hence, this paper presents a generic framework for accelerating the inference process, resulting in a substantial increase in speed and cost reduction for our RAG system, with lossless generation accuracy. In the traditional inference process, each token is generated sequentially by the LLM, leading to a time consumption proportional to the number of generated tokens. To enhance this process, our framework, named \textit{lookahead}, introduces a \textit{multi-branch} strategy. Instead of generating a single token at a time, we propose a \textit{Trie-based Retrieval} (TR) process that enables the generation of multiple branches simultaneously, each of which is a sequence of tokens. Subsequently, for each branch, a \textit{Verification and Accept} (VA) process is performed to identify the longest correct sub-sequence as the final output. Our strategy offers two distinct advantages: (1) it guarantees absolute correctness of the output, avoiding any approximation algorithms, and (2) the worst-case performance of our approach is equivalent to the conventional process. We conduct extensive experiments to demonstrate the significant improvements achieved by applying our inference acceleration framework.

Diffusion models have emerged as the de facto paradigm for video generation. However, their reliance on web-scale data of varied quality often yields results that are visually unappealing and misaligned with the textual prompts. To tackle this problem, we propose InstructVideo to instruct text-to-video diffusion models with human feedback by reward fine-tuning. InstructVideo has two key ingredients: 1) To ameliorate the cost of reward fine-tuning induced by generating through the full DDIM sampling chain, we recast reward fine-tuning as editing. By leveraging the diffusion process to corrupt a sampled video, InstructVideo requires only partial inference of the DDIM sampling chain, reducing fine-tuning cost while improving fine-tuning efficiency. 2) To mitigate the absence of a dedicated video reward model for human preferences, we repurpose established image reward models, e.g., HPSv2. To this end, we propose Segmental Video Reward, a mechanism to provide reward signals based on segmental sparse sampling, and Temporally Attenuated Reward, a method that mitigates temporal modeling degradation during fine-tuning. Extensive experiments, both qualitative and quantitative, validate the practicality and efficacy of using image reward models in InstructVideo, significantly enhancing the visual quality of generated videos without compromising generalization capabilities. Code and models will be made publicly available.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.

We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司