亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper addresses the ability to enable machines to automatically detect failures on machine tool components as well as estimating the severity of the failures, which is a critical step towards autonomous production machines. Extracting information about the severity of failures has been a substantial part of classical, as well as Machine Learning based machine vision systems. Efforts have been undertaken to automatically predict the severity of failures on machine tool components for predictive maintenance purposes. Though, most approaches only partly cover a completely automatic system from detecting failures to the prognosis of their future severity. To the best of the authors knowledge, this is the first time a vision-based system for defect detection and prognosis of failures on metallic surfaces in general and on Ball Screw Drives in specific has been proposed. The authors show that they can do both, detect and prognose the evolution of a failure on the surface of a Ball Screw Drive.

相關內容

Surface 是微軟公(gong)司(si)( )旗下一(yi)系(xi)列使用(yong) Windows 10(早期(qi)為(wei) Windows 8.X)操(cao)作系(xi)統的電腦(nao)產品,目前有 Surface、Surface Pro 和 Surface Book 三個系(xi)列。 2012 年(nian) 6 月 18 日,初代 Surface Pro/RT 由時任微軟 CEO 史蒂夫(fu)·鮑爾(er)默發布于在洛杉磯舉(ju)行(xing)的記者(zhe)會,2012 年(nian) 10 月 26 日上市銷(xiao)售(shou)。

Production companies face problems when it comes to quickly adapting their production control to fluctuating demands or changing requirements. Control approaches aiming to encapsulate production functions in the sense of services have shown to be promising in order to increase flexibility of Cyber-Physical Production Systems. But an existing challenge of such approaches is finding production plans based on provided functionalities for a set of requirements, especially when there is no direct (i.e., syntactic) match between demanded and provided functions. In such cases it can become complicated to find those provided functions that can be arranged into a plan satisfying the demand. While there is a variety of different approaches to production planning, flexible production poses specific requirements that are not covered by existing research. In this contribution, we first capture these requirements for flexible production environments. Afterwards, an overview of current Artificial Intelligence approaches that can be utilized in order to overcome the aforementioned challenges is given. Approaches from both symbolic AI planning as well as approaches based on Machine Learning are discussed and eventually compared against the requirements. Based on this comparison, a research agenda is derived.

Nowadays, intelligent systems and services are getting increasingly popular as they provide data-driven solutions to diverse real-world problems, thanks to recent breakthroughs in Artificial Intelligence (AI) and Machine Learning (ML). However, machine learning meets software engineering not only with promising potentials but also with some inherent challenges. Despite some recent research efforts, we still do not have a clear understanding of the challenges of developing ML-based applications and the current industry practices. Moreover, it is unclear where software engineering researchers should focus their efforts to better support ML application developers. In this paper, we report about a survey that aimed to understand the challenges and best practices of ML application development. We synthesize the results obtained from 80 practitioners (with diverse skills, experience, and application domains) into 17 findings; outlining challenges and best practices for ML application development. Practitioners involved in the development of ML-based software systems can leverage the summarized best practices to improve the quality of their system. We hope that the reported challenges will inform the research community about topics that need to be investigated to improve the engineering process and the quality of ML-based applications.

We present an open-source toolkit for neural machine translation (NMT). The new toolkit is mainly based on vaulted Transformer (Vaswani et al., 2017) along with many other improvements detailed below, in order to create a self-contained, simple to use, consistent and comprehensive framework for Machine Translation tasks of various domains. It is tooled to support both bilingual and multilingual translation tasks, starting from building the model from respective corpora, to inferring new predictions or packaging the model to serving-capable JIT format.

Decompilation transforms low-level program languages (PL) (e.g., binary code) into high-level PLs (e.g., C/C++). It has been widely used when analysts perform security analysis on software (systems) whose source code is unavailable, such as vulnerability search and malware analysis. However, current decompilation tools usually need lots of experts' efforts, even for years, to generate the rules for decompilation, which also requires long-term maintenance as the syntax of high-level PL or low-level PL changes. Also, an ideal decompiler should concisely generate high-level PL with similar functionality to the source low-level PL and semantic information (e.g., meaningful variable names), just like human-written code. Unfortunately, existing manually-defined rule-based decompilation techniques only functionally restore the low-level PL to a similar high-level PL and are still powerless to recover semantic information. In this paper, we propose a novel neural decompilation approach to translate low-level PL into accurate and user-friendly high-level PL, effectively improving its readability and understandability. Furthermore, we implement the proposed approaches called SEAM. Evaluations on four real-world applications show that SEAM has an average accuracy of 94.41%, which is much better than prior neural machine translation (NMT) models. Finally, we evaluate the effectiveness of semantic information recovery through a questionnaire survey, and the average accuracy is 92.64%, which is comparable or superior to the state-of-the-art compilers.

Breakthroughs in machine learning in the last decade have led to `digital intelligence', i.e. machine learning models capable of learning from vast amounts of labeled data to perform several digital tasks such as speech recognition, face recognition, machine translation and so on. The goal of this thesis is to make progress towards designing algorithms capable of `physical intelligence', i.e. building intelligent autonomous navigation agents capable of learning to perform complex navigation tasks in the physical world involving visual perception, natural language understanding, reasoning, planning, and sequential decision making. Despite several advances in classical navigation methods in the last few decades, current navigation agents struggle at long-term semantic navigation tasks. In the first part of the thesis, we discuss our work on short-term navigation using end-to-end reinforcement learning to tackle challenges such as obstacle avoidance, semantic perception, language grounding, and reasoning. In the second part, we present a new class of navigation methods based on modular learning and structured explicit map representations, which leverage the strengths of both classical and end-to-end learning methods, to tackle long-term navigation tasks. We show that these methods are able to effectively tackle challenges such as localization, mapping, long-term planning, exploration and learning semantic priors. These modular learning methods are capable of long-term spatial and semantic understanding and achieve state-of-the-art results on various navigation tasks.

Spatio-temporal forecasting has numerous applications in analyzing wireless, traffic, and financial networks. Many classical statistical models often fall short in handling the complexity and high non-linearity present in time-series data. Recent advances in deep learning allow for better modelling of spatial and temporal dependencies. While most of these models focus on obtaining accurate point forecasts, they do not characterize the prediction uncertainty. In this work, we consider the time-series data as a random realization from a nonlinear state-space model and target Bayesian inference of the hidden states for probabilistic forecasting. We use particle flow as the tool for approximating the posterior distribution of the states, as it is shown to be highly effective in complex, high-dimensional settings. Thorough experimentation on several real world time-series datasets demonstrates that our approach provides better characterization of uncertainty while maintaining comparable accuracy to the state-of-the art point forecasting methods.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or fifinance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.

Automated machine learning (AutoML) aims to find optimal machine learning solutions automatically given a machine learning problem. It could release the burden of data scientists from the multifarious manual tuning process and enable the access of domain experts to the off-the-shelf machine learning solutions without extensive experience. In this paper, we review the current developments of AutoML in terms of three categories, automated feature engineering (AutoFE), automated model and hyperparameter learning (AutoMHL), and automated deep learning (AutoDL). State-of-the-art techniques adopted in the three categories are presented, including Bayesian optimization, reinforcement learning, evolutionary algorithm, and gradient-based approaches. We summarize popular AutoML frameworks and conclude with current open challenges of AutoML.

This tutorial is based on the lecture notes for the courses "Machine Learning: Basic Principles" and "Artificial Intelligence", which I have (co-)taught since 2015 at Aalto University. The aim is to provide an accessible introduction to some of the main concepts and methods within machine learning. Many of the current systems which are considered as (artificially) intelligent are based on combinations of few basic machine learning methods. After formalizing the main building blocks of a machine learning problem, some popular algorithmic design patterns formachine learning methods are discussed in some detail.

北京阿比特科技有限公司