亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data. A single GNN layer typically consists of a feature transformation and a feature aggregation operation. The former normally uses feed-forward networks to transform features, while the latter aggregates the transformed features over the graph. Numerous recent works have proposed GNN models with different designs in the aggregation operation. In this work, we establish mathematically that the aggregation processes in a group of representative GNN models including GCN, GAT, PPNP, and APPNP can be regarded as (approximately) solving a graph denoising problem with a smoothness assumption. Such a unified view across GNNs not only provides a new perspective to understand a variety of aggregation operations but also enables us to develop a unified graph neural network framework UGNN. To demonstrate its promising potential, we instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes. Comprehensive experiments show the effectiveness of ADA-UGNN.

相關內容

Recently, Graph Neural Networks (GNNs) have greatly advanced the task of graph classification. Typically, we first build a unified GNN model with graphs in a given training set and then use this unified model to predict labels of all the unseen graphs in the test set. However, graphs in the same dataset often have dramatically distinct structures, which indicates that a unified model may be sub-optimal given an individual graph. Therefore, in this paper, we aim to develop customized graph neural networks for graph classification. Specifically, we propose a novel customized graph neural network framework, i.e., Customized-GNN. Given a graph sample, Customized-GNN can generate a sample-specific model for this graph based on its structure. Meanwhile, the proposed framework is very general that can be applied to numerous existing graph neural network models. Comprehensive experiments on various graph classification benchmarks demonstrate the effectiveness of the proposed framework.

While the advent of Graph Neural Networks (GNNs) has greatly improved node and graph representation learning in many applications, the neighborhood aggregation scheme exposes additional vulnerabilities to adversaries seeking to extract node-level information about sensitive attributes. In this paper, we study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data. We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance. Our method creates a strong defense against inference attacks, while only suffering small loss in task performance. Theoretically, we analyze the effectiveness of our framework against a worst-case adversary, and characterize an inherent trade-off between maximizing predictive accuracy and minimizing information leakage. Experiments across multiple datasets from recommender systems, knowledge graphs and quantum chemistry demonstrate that the proposed approach provides a robust defense across various graph structures and tasks, while producing competitive GNN encoders for downstream tasks.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

The prosperous development of e-commerce has spawned diverse recommendation systems. As a matter of fact, there exist rich and complex interactions among various types of nodes in real-world recommendation systems, which can be constructed as heterogeneous graphs. How learn representative node embedding is the basis and core of the personalized recommendation system. Meta-path is a widely used structure to capture the semantics beneath such interactions and show potential ability in improving node embedding. In this paper, we propose Heterogeneous Graph neural network for Recommendation (HGRec) which injects high-order semantic into node embedding via aggregating multi-hops meta-path based neighbors and fuses rich semantics via multiple meta-paths based on attention mechanism to get comprehensive node embedding. Experimental results demonstrate the importance of rich high-order semantics and also show the potentially good interpretability of HGRec.

We aim to better understand attention over nodes in graph neural networks (GNNs) and identify factors influencing its effectiveness. We particularly focus on the ability of attention GNNs to generalize to larger, more complex or noisy graphs. Motivated by insights from the work on Graph Isomorphism Networks, we design simple graph reasoning tasks that allow us to study attention in a controlled environment. We find that under typical conditions the effect of attention is negligible or even harmful, but under certain conditions it provides an exceptional gain in performance of more than 60% in some of our classification tasks. Satisfying these conditions in practice is challenging and often requires optimal initialization or supervised training of attention. We propose an alternative recipe and train attention in a weakly-supervised fashion that approaches the performance of supervised models, and, compared to unsupervised models, improves results on several synthetic as well as real datasets. Source code and datasets are available at //github.com/bknyaz/graph_attention_pool.

Learning powerful data embeddings has become a center piece in machine learning, especially in natural language processing and computer vision domains. The crux of these embeddings is that they are pretrained on huge corpus of data in a unsupervised fashion, sometimes aided with transfer learning. However currently in the graph learning domain, embeddings learned through existing graph neural networks (GNNs) are task dependent and thus cannot be shared across different datasets. In this paper, we present a first powerful and theoretically guaranteed graph neural network that is designed to learn task-independent graph embeddings, thereafter referred to as deep universal graph embedding (DUGNN). Our DUGNN model incorporates a novel graph neural network (as a universal graph encoder) and leverages rich Graph Kernels (as a multi-task graph decoder) for both unsupervised learning and (task-specific) adaptive supervised learning. By learning task-independent graph embeddings across diverse datasets, DUGNN also reaps the benefits of transfer learning. Through extensive experiments and ablation studies, we show that the proposed DUGNN model consistently outperforms both the existing state-of-art GNN models and Graph Kernels by an increased accuracy of 3% - 8% on graph classification benchmark datasets.

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with arbitrary depth. Although the primitive GNNs have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on variants of graph neural networks such as graph convolutional network (GCN), graph attention network (GAT), gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for each graph data while training. To efficiently learn the graph, a distance metric learning is proposed. Extensive experiments on nine graph-structured datasets have demonstrated the superior performance improvement on both convergence speed and predictive accuracy.

北京阿比特科技有限公司