亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we explore sampling from strongly log-concave distributions defined on convex and compact supports. We propose a general proximal framework that involves projecting onto the constrained set, which is highly flexible and supports various projection options. Specifically, we consider the cases of Euclidean and Gauge projections, with the latter having the advantage of being performed efficiently using a membership oracle. This framework can be seamlessly integrated with multiple sampling methods. Our analysis focuses on Langevin-type sampling algorithms within the context of constrained sampling. We provide nonasymptotic upper bounds on the W1 and W2 errors, offering a detailed comparison of the performance of these methods in constrained sampling.

相關內容

In this paper, we compare general-purpose pretrained models, GPT-4-Turbo and Llama-3-8b-Instruct with special-purpose models fine-tuned on specific tasks, XLM-Roberta-large, mT5-large, and Llama-3-8b-Instruct. We focus on seven classification and six generation tasks to evaluate the performance of these models on Urdu language. Urdu has 70 million native speakers, yet it remains underrepresented in Natural Language Processing (NLP). Despite the frequent advancements in Large Language Models (LLMs), their performance in low-resource languages, including Urdu, still needs to be explored. We also conduct a human evaluation for the generation tasks and compare the results with the evaluations performed by GPT-4-Turbo and Llama-3-8b-Instruct. We find that special-purpose models consistently outperform general-purpose models across various tasks. We also find that the evaluation done by GPT-4-Turbo for generation tasks aligns more closely with human evaluation compared to the evaluation by Llama-3-8b-Instruct. This paper contributes to the NLP community by providing insights into the effectiveness of general and specific-purpose LLMs for low-resource languages.

This paper introduces a tool for verifying Python programs, which, using type annotation and front-end processing, can harness the capabilities of a bounded model-checking (BMC) pipeline. It transforms an input program into an abstract syntax tree to infer and add type information. Then, it translates Python expressions and statements into an intermediate representation. Finally, it converts this description into formulae evaluated with satisfiability modulo theories (SMT) solvers. The proposed approach was realized with the efficient SMT-based bounded model checker (ESBMC), which resulted in a tool called ESBMC-Python, the first BMC-based Python-code verifier. Experimental results, with a test suite specifically developed for this purpose, showed its effectiveness, where successful and failed tests were correctly evaluated. Moreover, it found a real problem in the Ethereum Consensus Specification.

In this paper, we present an information-theoretic method for clustering mixed-type data, that is, data consisting of both continuous and categorical variables. The method is a variant of the Deterministic Information Bottleneck algorithm which optimally compresses the data while retaining relevant information about the underlying structure. We compare the performance of the proposed method to that of three well-established clustering methods (KAMILA, K-Prototypes, and Partitioning Around Medoids with Gower's dissimilarity) on simulated and real-world datasets. The results demonstrate that the proposed approach represents a competitive alternative to conventional clustering techniques under specific conditions.

In this paper, we explore the properties of loss curvature with respect to input data in deep neural networks. Curvature of loss with respect to input (termed input loss curvature) is the trace of the Hessian of the loss with respect to the input. We investigate how input loss curvature varies between train and test sets, and its implications for train-test distinguishability. We develop a theoretical framework that derives an upper bound on the train-test distinguishability based on privacy and the size of the training set. This novel insight fuels the development of a new black box membership inference attack utilizing input loss curvature. We validate our theoretical findings through experiments in computer vision classification tasks, demonstrating that input loss curvature surpasses existing methods in membership inference effectiveness. Our analysis highlights how the performance of membership inference attack (MIA) methods varies with the size of the training set, showing that curvature-based MIA outperforms other methods on sufficiently large datasets. This condition is often met by real datasets, as demonstrated by our results on CIFAR10, CIFAR100, and ImageNet. These findings not only advance our understanding of deep neural network behavior but also improve the ability to test privacy-preserving techniques in machine learning.

In this paper, we demonstrate a surprising capability of large language models (LLMs): given only input feature names and a description of a prediction task, they are capable of selecting the most predictive features, with performance rivaling the standard tools of data science. Remarkably, these models exhibit this capacity across various query mechanisms. For example, we zero-shot prompt an LLM to output a numerical importance score for a feature (e.g., "blood pressure") in predicting an outcome of interest (e.g., "heart failure"), with no additional context. In particular, we find that the latest models, such as GPT-4, can consistently identify the most predictive features regardless of the query mechanism and across various prompting strategies. We illustrate these findings through extensive experiments on real-world data, where we show that LLM-based feature selection consistently achieves strong performance competitive with data-driven methods such as the LASSO, despite never having looked at the downstream training data. Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place. This could potentially benefit practitioners in domains like healthcare, where collecting high-quality data comes at a high cost.

Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

In this paper, we present a comprehensive review of the imbalance problems in object detection. To analyze the problems in a systematic manner, we introduce a problem-based taxonomy. Following this taxonomy, we discuss each problem in depth and present a unifying yet critical perspective on the solutions in the literature. In addition, we identify major open issues regarding the existing imbalance problems as well as imbalance problems that have not been discussed before. Moreover, in order to keep our review up to date, we provide an accompanying webpage which catalogs papers addressing imbalance problems, according to our problem-based taxonomy. Researchers can track newer studies on this webpage available at: //github.com/kemaloksuz/ObjectDetectionImbalance .

The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.

In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.

北京阿比特科技有限公司