亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work addresses maximally robust control synthesis under unknown disturbances. We consider a general nonlinear system, subject to a Signal Temporal Logic (STL) specification, and wish to jointly synthesize the maximal possible disturbance bounds and the corresponding controllers that ensure the STL specification is satisfied under these bounds. Many works have considered STL satisfaction under given bounded disturbances. Yet, to the authors' best knowledge, this is the first work that aims to maximize the permissible disturbance set and find the corresponding controllers that ensure satisfying the STL specification with maximum disturbance robustness. We extend the notion of disturbance-robust semantics for STL, which is a property of a specification, dynamical system, and controller, and provide an algorithm to get the maximal disturbance robust controllers satisfying an STL specification using Hamilton-Jacobi reachability. We show its soundness and provide a simulation example with an Autonomous Underwater Vehicle (AUV).

相關內容

In recent years, differential privacy has emerged as the de facto standard for sharing statistics of datasets while limiting the disclosure of private information about the involved individuals. This is achieved by randomly perturbing the statistics to be published, which in turn leads to a privacy-accuracy trade-off: larger perturbations provide stronger privacy guarantees, but they result in less accurate statistics that offer lower utility to the recipients. Of particular interest are therefore optimal mechanisms that provide the highest accuracy for a pre-selected level of privacy. To date, work in this area has focused on specifying families of perturbations a priori and subsequently proving their asymptotic and/or best-in-class optimality. In this paper, we develop a class of mechanisms that enjoy non-asymptotic and unconditional optimality guarantees. To this end, we formulate the mechanism design problem as an infinite-dimensional distributionally robust optimization problem. We show that the problem affords a strong dual, and we exploit this duality to develop converging hierarchies of finite-dimensional upper and lower bounding problems. Our upper (primal) bounds correspond to implementable perturbations whose suboptimality can be bounded by our lower (dual) bounds. Both bounding problems can be solved within seconds via cutting plane techniques that exploit the inherent problem structure. Our numerical experiments demonstrate that our perturbations can outperform the previously best results from the literature on artificial as well as standard benchmark problems.

Efficient computation of sensitivities is a promising approach for efficiently of designing and optimizing high voltage direct current cable joints. This paper presents the adjoint variable method for coupled nonlinear transient electrothermal problems as an efficient approach to compute sensitivities with respect to a large number of design parameters. The method is used to compute material sensitivities of a 320kV high voltage direct current cable joint specimen. The results are validated against sensitivities obtained via the direct sensitivity method.

Hypergraphs are crucial for modeling higher-order interactions in real-world data. Hypergraph neural networks (HNNs) effectively utilise these structures by message passing to generate informative node features for various downstream tasks like node classification. However, the message passing block in existing HNNs typically requires a computationally intensive training process, which limits their practical use. To tackle this challenge, we propose an alternative approach by decoupling the usage of the hypergraph structural information from the model training stage. The proposed model, simplified hypergraph neural network (SHNN), contains a training-free message-passing block that can be precomputed before the training of SHNN, thereby reducing the computational burden. We theoretically support the efficiency and effectiveness of SHNN by showing that: 1) It is more training-efficient compared to existing HNNs; 2) It utilises as much information as existing HNNs for node feature generation; and 3) It is robust against the oversmoothing issue while using long-range interactions. Experiments based on six real-world hypergraph benchmarks in node classification and hyperlink prediction present that, compared to state-of-the-art HNNs, SHNN shows both competitive performance and superior training efficiency. Specifically, on Cora-CA, SHNN achieves the highest node classification accuracy with just 2% training time of the best baseline.

Social relations have been widely incorporated into recommender systems to alleviate data sparsity problem. However, raw social relations don't always benefit recommendation due to their inferior quality and insufficient quantity, especially for inactive users, whose interacted items are limited. In this paper, we propose a novel social recommendation method called LSIR (\textbf{L}earning \textbf{S}ocial Graph for \textbf{I}nactive User \textbf{R}ecommendation) that learns an optimal social graph structure for social recommendation, especially for inactive users. LSIR recursively aggregates user and item embeddings to collaboratively encode item and user features. Then, graph structure learning (GSL) is employed to refine the raw user-user social graph, by removing noisy edges and adding new edges based on the enhanced embeddings. Meanwhile, mimic learning is implemented to guide active users in mimicking inactive users during model training, which improves the construction of new edges for inactive users. Extensive experiments on real-world datasets demonstrate that LSIR achieves significant improvements of up to 129.58\% on NDCG in inactive user recommendation. Our code is available at~\url{//github.com/liun-online/LSIR}.

We propose a covariance stationarity test for an otherwise dependent and possibly globally non-stationary time series. We work in a generalized version of the new setting in Jin, Wang and Wang (2015), who exploit Walsh (1923) functions in order to compare sub-sample covariances with the full sample counterpart. They impose strict stationarity under the null, only consider linear processes under either hypothesis in order to achieve a parametric estimator for an inverted high dimensional asymptotic covariance matrix, and do not consider any other orthonormal basis. Conversely, we work with a general orthonormal basis under mild conditions that include Haar wavelet and Walsh functions; and we allow for linear or nonlinear processes with possibly non-iid innovations. This is important in macroeconomics and finance where nonlinear feedback and random volatility occur in many settings. We completely sidestep asymptotic covariance matrix estimation and inversion by bootstrapping a max-correlation difference statistic, where the maximum is taken over the correlation lag $h$ and basis generated sub-sample counter $k$ (the number of systematic samples). We achieve a higher feasible rate of increase for the maximum lag and counter $\mathcal{H}_{T}$ and $\mathcal{K}_{T}$. Of particular note, our test is capable of detecting breaks in variance, and distant, or very mild, deviations from stationarity.

This work demonstrates that substantial gains in zero-shot dialogue state tracking (DST) accuracy can be achieved by increasing the diversity of training data using synthetic data generation techniques. Current DST training resources are severely limited in the number of application domains and slot types they cover due to the high costs of data collection, resulting in limited adaptability to new domains. The presented work overcomes this challenge using a novel, fully automatic data generation approach to create synthetic zero-shot DST training resources. Unlike previous approaches for generating DST data, the presented approach generates entirely new application domains to generate dialogues, complete with silver dialogue state annotations and slot descriptions. This approach is used to create the D0T dataset for training zero-shot DST models, which covers an unprecedented 1,000+ domains. Experiments performed on the MultiWOZ benchmark indicate that training models on diverse synthetic data yields a performance improvement of +6.7% Joint Goal Accuracy, achieving results competitive with much larger models.

In scenarios with limited available data, training the function-to-function neural PDE solver in an unsupervised manner is essential. However, the efficiency and accuracy of existing methods are constrained by the properties of numerical algorithms, such as finite difference and pseudo-spectral methods, integrated during the training stage. These methods necessitate careful spatiotemporal discretization to achieve reasonable accuracy, leading to significant computational challenges and inaccurate simulations, particularly in cases with substantial spatiotemporal variations. To address these limitations, we propose the Monte Carlo Neural PDE Solver (MCNP Solver) for training unsupervised neural solvers via the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles. Compared to other unsupervised methods, MCNP Solver naturally inherits the advantages of the Monte Carlo method, which is robust against spatiotemporal variations and can tolerate coarse step size. In simulating the trajectories of particles, we employ Heun's method for the convection process and calculate the expectation via the probability density function of neighbouring grid points during the diffusion process. These techniques enhance accuracy and circumvent the computational issues associated with Monte Carlo sampling. Our numerical experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency compared to other unsupervised baselines. The source code will be publicly available at: //github.com/optray/MCNP.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司