亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Hamiltonian systems of ordinary and partial differential equations are fundamental across modern science and engineering, appearing in models that span virtually all physical scales. A critical property for the robustness and stability of computational methods in such systems is the symplectic structure, which preserves geometric properties like phase-space volume over time and energy conservation over an extended period. In this paper, we present quantum algorithms that incorporate symplectic integrators, ensuring the preservation of this key structure. We demonstrate how these algorithms maintain the symplectic properties for both linear and nonlinear Hamiltonian systems. Additionally, we provide a comprehensive theoretical analysis of the computational complexity, showing that our approach offers both accuracy and improved efficiency over classical algorithms. These results highlight the potential application of quantum algorithms for solving large-scale Hamiltonian systems while preserving essential physical properties.

相關內容

Gradient Descent (GD) and Conjugate Gradient (CG) methods are among the most effective iterative algorithms for solving unconstrained optimization problems, particularly in machine learning and statistical modeling, where they are employed to minimize cost functions. In these algorithms, tunable parameters, such as step sizes or conjugate parameters, play a crucial role in determining key performance metrics, like runtime and solution quality. In this work, we introduce a framework that models algorithm selection as a statistical learning problem, and thus learning complexity can be estimated by the pseudo-dimension of the algorithm group. We first propose a new cost measure for unconstrained optimization algorithms, inspired by the concept of primal-dual integral in mixed-integer linear programming. Based on the new cost measure, we derive an improved upper bound for the pseudo-dimension of gradient descent algorithm group by discretizing the set of step size configurations. Moreover, we generalize our findings from gradient descent algorithm to the conjugate gradient algorithm group for the first time, and prove the existence a learning algorithm capable of probabilistically identifying the optimal algorithm with a sufficiently large sample size.

We propose a procedure for the numerical approximation of invariance equations arising in the moment matching technique associated with reduced-order modeling of high-dimensional dynamical systems. The Galerkin residual method is employed to find an approximate solution to the invariance equation using a Newton iteration on the coefficients of a monomial basis expansion of the solution. These solutions to the invariance equations can then be used to construct reduced-order models. We assess the ability of the method to solve the invariance PDE system as well as to achieve moment matching and recover a system's steady-state behaviour for linear and nonlinear signal generators with system dynamics up to $n=1000$ dimensions.

We prove, for stably computably enumerable formal systems, direct analogues of the first and second incompleteness theorems of G\"odel. A typical stably computably enumerable set is the set of Diophantine equations with no integer solutions, and in particular such sets are generally not computably enumerable. And so this gives the first extension of the second incompleteness theorem to non classically computable formal systems. Let's motivate this with a somewhat physical application. Let $\mathcal{H} $ be the suitable infinite time limit (stabilization in the sense of the paper) of the mathematical output of humanity, specializing to first order sentences in the language of arithmetic (for simplicity), and understood as a formal system. Suppose that all the relevant physical processes in the formation of $\mathcal{H} $ are Turing computable. Then as defined $\mathcal{H} $ may \emph{not} be computably enumerable, but it is stably computably enumerable. Thus, the classical G\"odel disjunction applied to $\mathcal{H} $ is meaningless, but applying our incompleteness theorems to $\mathcal{H} $ we then get a sharper version of G\"odel's disjunction: assume $\mathcal{H} \vdash PA$ then either $\mathcal{H} $ is not stably computably enumerable or $\mathcal{H} $ is not 1-consistent (in particular is not sound) or $\mathcal{H} $ cannot prove a certain true statement of arithmetic (and cannot disprove it if in addition $\mathcal{H} $ is 2-consistent).

This manuscript studies the numerical solution of the time-fractional Burgers-Huxley equation in a reproducing kernel Hilbert space. The analytical solution of the equation is obtained in terms of a convergent series with easily computable components. It is observed that the approximate solution uniformly converges to the exact solution for the aforementioned equation. Also, the convergence of the proposed method is investigated. Numerical examples are given to demonstrate the validity and applicability of the presented method. The numerical results indicate that the proposed method is powerful and effective with a small computational overhead.

Dynamical theories of speech use computational models of articulatory control to generate quantitative predictions and advance understanding of speech dynamics. The addition of a nonlinear restoring force to task dynamic models is a significant improvement over linear models, but nonlinearity introduces challenges with parameterization and interpretability. We illustrate these problems through numerical simulations and introduce solutions in the form of scaling laws. We apply the scaling laws to a cubic model and show how they facilitate interpretable simulations of articulatory dynamics, and can be theoretically interpreted as imposing physical and cognitive constraints on models of speech movement dynamics.

Many combinatorial optimization problems can be formulated as the search for a subgraph that satisfies certain properties and minimizes the total weight. We assume here that the vertices correspond to points in a metric space and can take any position in given uncertainty sets. Then, the cost function to be minimized is the sum of the distances for the worst positions of the vertices in their uncertainty sets. We propose two types of polynomial-time approximation algorithms. The first one relies on solving a deterministic counterpart of the problem where the uncertain distances are replaced with maximum pairwise distances. We study in details the resulting approximation ratio, which depends on the structure of the feasible subgraphs and whether the metric space is Ptolemaic or not. The second algorithm is a fully-polynomial time approximation scheme for the special case of $s-t$ paths.

High-dimensional parabolic partial differential equations (PDEs) often involve large-scale Hessian matrices, which are computationally expensive for deep learning methods relying on automatic differentiation to compute derivatives. This work aims to address this issue. In the proposed method, the PDE is reformulated into a martingale formulation, which allows the computation of loss functions to be derivative-free and parallelized in time-space domain. Then, the martingale formulation is enforced using a Galerkin method via adversarial learning techniques, which eliminate the need of computing conditional expectations in the margtingale property. This method is further extended to solve Hamilton-Jacobi-Bellman (HJB) equations and the associated Stochastic optimal control problems, enabling the simultaneous solution of the value function and optimal feedback control in a derivative-free manner. Numerical results demonstrate the effectiveness and efficiency of the proposed method, capable of solving HJB equations accurately with dimensionality up to 10,000.

We propose and analyse a boundary-preserving numerical scheme for the weak approximations of some stochastic partial differential equations (SPDEs) with bounded state-space. We impose regularity assumptions on the drift and diffusion coefficients only locally on the state-space. In particular, the drift and diffusion coefficients may be non-globally Lipschitz continuous and superlinearly growing. The scheme consists of a finite difference discretisation in space and a Lie--Trotter splitting followed by exact simulation and exact integration in time. We prove weak convergence of optimal order 1/4 for globally Lipschitz continuous test functions of the scheme by proving strong convergence towards a strong solution driven by a different noise process. Boundary-preservation is ensured by the use of Lie--Trotter time splitting followed by exact simulation and exact integration. Numerical experiments confirm the theoretical results and demonstrate the effectiveness of the proposed Lie--Trotter-Exact (LTE) scheme compared to existing methods for SPDEs.

The phenomenon of finite time blow-up in hydrodynamic partial differential equations is central in analysis and mathematical physics. While numerical studies have guided theoretical breakthroughs, it is challenging to determine if the observed computational results are genuine or mere numerical artifacts. Here we identify numerical signatures of blow-up. Our study is based on the complexified Euler equations in two dimensions, where instant blow-up is expected. Via a geometrically consistent spatiotemporal discretization, we perform several numerical experiments and verify their computational stability. We then identify a signature of blow-up based on the growth rates of the supremum norm of the vorticity with increasing spatial resolution. The study aims to be a guide for cross-checking the validity for future numerical experiments of suspected blow-up in equations where the analysis is not yet resolved.

The dynamics of magnetization in ferromagnetic materials are modeled by the Landau-Lifshitz equation, which presents significant challenges due to its inherent nonlinearity and non-convex constraint. These complexities necessitate efficient numerical methods for micromagnetics simulations. The Gauss-Seidel Projection Method (GSPM), first introduced in 2001, is among the most efficient techniques currently available. However, existing GSPMs are limited to first-order accuracy. This paper introduces two novel second-order accurate GSPMs based on a combination of the biharmonic equation and the second-order backward differentiation formula, achieving computational complexity comparable to that of solving the scalar biharmonic equation implicitly. The first proposed method achieves unconditional stability through Gauss-Seidel updates, while the second method exhibits conditional stability with a Courant-Friedrichs-Lewy constant of 0.25. Through consistency analysis and numerical experiments, we demonstrate the efficacy and reliability of these methods. Notably, the first method displays unconditional stability in micromagnetics simulations, even when the stray field is updated only once per time step.

北京阿比特科技有限公司