This paper reports on the development of \textbf{a novel style guided diffusion model (SGDiff)} which overcomes certain weaknesses inherent in existing models for image synthesis. The proposed SGDiff combines image modality with a pretrained text-to-image diffusion model to facilitate creative fashion image synthesis. It addresses the limitations of text-to-image diffusion models by incorporating supplementary style guidance, substantially reducing training costs, and overcoming the difficulties of controlling synthesized styles with text-only inputs. This paper also introduces a new dataset -- SG-Fashion, specifically designed for fashion image synthesis applications, offering high-resolution images and an extensive range of garment categories. By means of comprehensive ablation study, we examine the application of classifier-free guidance to a variety of conditions and validate the effectiveness of the proposed model for generating fashion images of the desired categories, product attributes, and styles. The contributions of this paper include a novel classifier-free guidance method for multi-modal feature fusion, a comprehensive dataset for fashion image synthesis application, a thorough investigation on conditioned text-to-image synthesis, and valuable insights for future research in the text-to-image synthesis domain. The code and dataset are available at: \url{//github.com/taited/SGDiff}.
The growth of Graph Convolution Network (GCN) model sizes has revolutionized numerous applications, surpassing human performance in areas such as personal healthcare and financial systems. The deployment of GCNs in the cloud raises privacy concerns due to potential adversarial attacks on client data. To address security concerns, Privacy-Preserving Machine Learning (PPML) using Homomorphic Encryption (HE) secures sensitive client data. However, it introduces substantial computational overhead in practical applications. To tackle those challenges, we present LinGCN, a framework designed to reduce multiplication depth and optimize the performance of HE based GCN inference. LinGCN is structured around three key elements: (1) A differentiable structural linearization algorithm, complemented by a parameterized discrete indicator function, co-trained with model weights to meet the optimization goal. This strategy promotes fine-grained node-level non-linear location selection, resulting in a model with minimized multiplication depth. (2) A compact node-wise polynomial replacement policy with a second-order trainable activation function, steered towards superior convergence by a two-level distillation approach from an all-ReLU based teacher model. (3) an enhanced HE solution that enables finer-grained operator fusion for node-wise activation functions, further reducing multiplication level consumption in HE-based inference. Our experiments on the NTU-XVIEW skeleton joint dataset reveal that LinGCN excels in latency, accuracy, and scalability for homomorphically encrypted inference, outperforming solutions such as CryptoGCN. Remarkably, LinGCN achieves a 14.2x latency speedup relative to CryptoGCN, while preserving an inference accuracy of 75% and notably reducing multiplication depth.
Large Language Models have not yet been broadly adapted for the analysis of scientific datasets due in part to the unique difficulties of tokenizing numbers. We propose xVal, a numerical encoding scheme that represents any real number using just a single token. xVal represents a given real number by scaling a dedicated embedding vector by the number value. Combined with a modified number-inference approach, this strategy renders the model end-to-end continuous when considered as a map from the numbers of the input string to those of the output string. This leads to an inductive bias that is generally more suitable for applications in scientific domains. We empirically evaluate our proposal on a number of synthetic and real-world datasets. Compared with existing number encoding schemes, we find that xVal is more token-efficient and demonstrates improved generalization.
This paper proposes a novel diffusion-based model, CompoDiff, for solving Composed Image Retrieval (CIR) with latent diffusion and presents a newly created dataset, named SynthTriplets18M, of 18 million reference images, conditions, and corresponding target image triplets to train the model. CompoDiff and SynthTriplets18M tackle the shortages of the previous CIR approaches, such as poor generalizability due to the small dataset scale and the limited types of conditions. CompoDiff not only achieves a new zero-shot state-of-the-art on four CIR benchmarks, including FashionIQ, CIRR, CIRCO, and GeneCIS, but also enables a more versatile and controllable CIR by accepting various conditions, such as negative text and image mask conditions, and the controllability to the importance between multiple queries or the trade-off between inference speed and the performance which are unavailable with existing CIR methods. The code and dataset are available at //github.com/navervision/CompoDiff
The recent advancement of large language models (LLMs) has been achieved through a combo of instruction tuning and human alignment. However, building manually crafted instruction datasets and performing human alignment become the bottleneck for scaling the development of LLMs. In this paper, we exploit the idea of leveraging AI models in lieu of humans as the teacher to train student LLMs. Our method is inspired by how human students refine their writing skills by following the rubrics and learning from the revisions offered by their tutors. Specifically, we employ a teacher LLM to create a curriculum for instruction tuning of the student LLM, namely Curriculum Instruction TunING (CITING). It encompasses two main steps: (1) the teacher LLM crafts the rubrics for evaluating the answers corresponding to various types of questions, and (2) the student LLM learns to follow the rubrics and perform self-correction from the revision made by the teacher. We further iteratively carry out it to embody the procedure of CITING. We compare CITING to a series of state-of-the-art baselines on four datasets. Our method demonstrates strong improvement in terms of articulate, in-depth, and comprehensive by GPT-4 evaluation. Specifically, it achieves an average winning rate of 79.4% over SFT, 73.4% over RLHF, 78.1% over RRHF, and 76.3% over RAFT, respectively.
As quantum computing is rising in popularity, the amount of quantum programs and the number of developers writing them are increasing rapidly. Unfortunately, writing correct quantum programs is challenging due to various subtle rules developers need to be aware of. Empirical studies show that 40-82% of all bugs in quantum software are specific to the quantum domain. Yet, existing static bug detection frameworks are mostly unaware of quantum-specific concepts, such as circuits, gates, and qubits, and hence miss many bugs. This paper presents LintQ, a comprehensive static analysis framework for detecting bugs in quantum programs. Our approach is enabled by a set of abstractions designed to reason about common concepts in quantum computing without referring to the details of the underlying quantum computing platform. Built on top of these abstractions, LintQ offers an extensible set of nine analyses that detect likely bugs, such as operating on corrupted quantum states, redundant measurements, and incorrect compositions of sub-circuits. We apply the approach to a newly collected dataset of 7,568 real-world Qiskit-based quantum programs, showing that LintQ effectively identifies various programming problems with a precision of 80.5%. Comparing to a general-purpose linter and two existing, quantum-aware techniques shows that all problems found by LintQ during our evaluation are missed by prior work. LintQ hence takes an important step toward reliable software in the growing field of quantum computing.
Motivated by humans' ability to adapt skills in the learning of new ones, this paper presents AdaptNet, an approach for modifying the latent space of existing policies to allow new behaviors to be quickly learned from like tasks in comparison to learning from scratch. Building on top of a given reinforcement learning controller, AdaptNet uses a two-tier hierarchy that augments the original state embedding to support modest changes in a behavior and further modifies the policy network layers to make more substantive changes. The technique is shown to be effective for adapting existing physics-based controllers to a wide range of new styles for locomotion, new task targets, changes in character morphology and extensive changes in environment. Furthermore, it exhibits significant increase in learning efficiency, as indicated by greatly reduced training times when compared to training from scratch or using other approaches that modify existing policies.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.