亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Uncovering potential failure cases is a crucial step in the validation of safety critical systems such as autonomous vehicles. Failure search may be done through logging substantial vehicle miles in either simulation or real world testing. Due to the sparsity of failure events, naive random search approaches require significant amounts of vehicle operation hours to find potential system weaknesses. As a result, adaptive searching techniques have been proposed to efficiently explore and uncover failure trajectories of an autonomous policy in simulation. Adaptive Stress Testing (AST) is one such method that poses the problem of failure search as a Markov decision process and uses reinforcement learning techniques to find high probability failures. However, this formulation requires a probability model for the actions of all agents in the environment. In systems where the environment actions are discrete and dependencies among agents exist, it may be infeasible to fully characterize the distribution or find a suitable proxy. This work proposes the use of a data driven approach to learn a suitable classifier that tries to model how humans identify {critical states and use this to guide failure search in AST. We show that the incorporation of critical states into the AST framework generates failure scenarios with increased safety violations in an autonomous driving policy with a discrete action space.

相關內容

互聯網

Learning communication strategies in cooperative multi-agent reinforcement learning (MARL) has recently attracted intensive attention. Early studies typically assumed a fully-connected communication topology among agents, which induces high communication costs and may not be feasible. Some recent works have developed adaptive communication strategies to reduce communication overhead, but these methods cannot effectively obtain valuable information from agents that are beyond the communication range. In this paper, we consider a realistic communication model where each agent has a limited communication range, and the communication topology dynamically changes. To facilitate effective agent communication, we propose a novel communication protocol called Adaptively Controlled Two-Hop Communication (AC2C). After an initial local communication round, AC2C employs an adaptive two-hop communication strategy to enable long-range information exchange among agents to boost performance, which is implemented by a communication controller. This controller determines whether each agent should ask for two-hop messages and thus helps to reduce the communication overhead during distributed execution. We evaluate AC2C on three cooperative multi-agent tasks, and the experimental results show that it outperforms relevant baselines with lower communication costs.

Modeling of real-world biological multi-agents is a fundamental problem in various scientific and engineering fields. Reinforcement learning (RL) is a powerful framework to generate flexible and diverse behaviors in cyberspace; however, when modeling real-world biological multi-agents, there is a domain gap between behaviors in the source (i.e., real-world data) and the target (i.e., cyberspace for RL), and the source environment parameters are usually unknown. In this paper, we propose a method for adaptive action supervision in RL from real-world demonstrations in multi-agent scenarios. We adopt an approach that combines RL and supervised learning by selecting actions of demonstrations in RL based on the minimum distance of dynamic time warping for utilizing the information of the unknown source dynamics. This approach can be easily applied to many existing neural network architectures and provide us with an RL model balanced between reproducibility as imitation and generalization ability to obtain rewards in cyberspace. In the experiments, using chase-and-escape and football tasks with the different dynamics between the unknown source and target environments, we show that our approach achieved a balance between the reproducibility and the generalization ability compared with the baselines. In particular, we used the tracking data of professional football players as expert demonstrations in football and show successful performances despite the larger gap between behaviors in the source and target environments than the chase-and-escape task.

One of the main tasks of an autonomous agent in a vehicle is to correctly perceive its environment. Much of the data that needs to be processed is collected by optical sensors such as cameras. Unfortunately, the data collected in this way can be affected by a variety of factors, including environmental influences such as inclement weather conditions (e.g., rain). Such noisy data can cause autonomous agents to take wrong decisions with potentially fatal outcomes. This paper addresses the rain image challenge by two steps: First, rain is artificially added to a set of clear-weather condition images using a Generative Adversarial Network (GAN). This yields good/bad weather image pairs for training de-raining models. This artificial generation of rain images is sufficiently realistic as in 7 out of 10 cases, human test subjects believed the generated rain images to be real. In a second step, this paired good/bad weather image data is used to train two rain denoising models, one based primarily on a Convolutional Neural Network (CNN) and the other using a Vision Transformer. This rain de-noising step showed limited performance as the quality gain was only about 15%. This lack of performance on realistic rain images as used in our study is likely due to current rain de-noising models being developed for simplistic rain overlay data. Our study shows that there is ample space for improvement of de-raining models in autonomous driving.

Active search, in applications like environment monitoring or disaster response missions, involves autonomous agents detecting targets in a search space using decision making algorithms that adapt to the history of their observations. Active search algorithms must contend with two types of uncertainty: detection uncertainty and location uncertainty. The more common approach in robotics is to focus on location uncertainty and remove detection uncertainty by thresholding the detection probability to zero or one. In contrast, it is common in the sparse signal processing literature to assume the target location is accurate and instead focus on the uncertainty of its detection. In this work, we first propose an inference method to jointly handle both target detection and location uncertainty. We then build a decision making algorithm on this inference method that uses Thompson sampling to enable decentralized multi-agent active search. We perform simulation experiments to show that our algorithms outperform competing baselines that only account for either target detection or location uncertainty. We finally demonstrate the real world transferability of our algorithms using a realistic simulation environment we created on the Unreal Engine 4 platform with an AirSim plugin.

We study the multi-task learning problem that aims to simultaneously analyze multiple datasets collected from different sources and learn one model for each of them. We propose a family of adaptive methods that automatically utilize possible similarities among those tasks while carefully handling their differences. We derive sharp statistical guarantees for the methods and prove their robustness against outlier tasks. Numerical experiments on synthetic and real datasets demonstrate the efficacy of our new methods.

Robots with the ability to balance time against the thoroughness of search have the potential to provide time-critical assistance in applications such as search and rescue. Current advances in ergodic coverage-based search methods have enabled robots to completely explore and search an area in a fixed amount of time. However, optimizing time against the quality of autonomous ergodic search has yet to be demonstrated. In this paper, we investigate solutions to the time-optimal ergodic search problem for fast and adaptive robotic search and exploration. We pose the problem as a minimum time problem with an ergodic inequality constraint whose upper bound regulates and balances the granularity of search against time. Solutions to the problem are presented analytically using Pontryagin's conditions of optimality and demonstrated numerically through a direct transcription optimization approach. We show the efficacy of the approach in generating time-optimal ergodic search trajectories in simulation and with drone experiments in a cluttered environment. Obstacle avoidance is shown to be readily integrated into our formulation, and we perform ablation studies that investigate parameter dependence on optimized time and trajectory sensitivity for search.

Accurate uncertainty measurement is a key step to building robust and reliable machine learning systems. Conformal prediction is a distribution-free uncertainty quantification algorithm popular for its ease of implementation, statistical coverage guarantees, and versatility for underlying forecasters. However, existing conformal prediction algorithms for time series are limited to single-step prediction without considering the temporal dependency. In this paper we propose a Copula Conformal Prediction algorithm for multivariate, multi-step Time Series forecasting, CopulaCPTS. We prove that CopulaCPTS has finite sample validity guarantee. On several synthetic and real-world multivariate time series datasets, we show that CopulaCPTS produces more calibrated and sharp confidence intervals for multi-step prediction tasks than existing techniques.

Over the past decade, domain adaptation has become a widely studied branch of transfer learning that aims to improve performance on target domains by leveraging knowledge from the source domain. Conventional domain adaptation methods often assume access to both source and target domain data simultaneously, which may not be feasible in real-world scenarios due to privacy and confidentiality concerns. As a result, the research of Source-Free Domain Adaptation (SFDA) has drawn growing attention in recent years, which only utilizes the source-trained model and unlabeled target data to adapt to the target domain. Despite the rapid explosion of SFDA work, yet there has no timely and comprehensive survey in the field. To fill this gap, we provide a comprehensive survey of recent advances in SFDA and organize them into a unified categorization scheme based on the framework of transfer learning. Instead of presenting each approach independently, we modularize several components of each method to more clearly illustrate their relationships and mechanics in light of the composite properties of each method. Furthermore, we compare the results of more than 30 representative SFDA methods on three popular classification benchmarks, namely Office-31, Office-home, and VisDA, to explore the effectiveness of various technical routes and the combination effects among them. Additionally, we briefly introduce the applications of SFDA and related fields. Drawing from our analysis of the challenges facing SFDA, we offer some insights into future research directions and potential settings.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

Search in social networks such as Facebook poses different challenges than in classical web search: besides the query text, it is important to take into account the searcher's context to provide relevant results. Their social graph is an integral part of this context and is a unique aspect of Facebook search. While embedding-based retrieval (EBR) has been applied in eb search engines for years, Facebook search was still mainly based on a Boolean matching model. In this paper, we discuss the techniques for applying EBR to a Facebook Search system. We introduce the unified embedding framework developed to model semantic embeddings for personalized search, and the system to serve embedding-based retrieval in a typical search system based on an inverted index. We discuss various tricks and experiences on end-to-end optimization of the whole system, including ANN parameter tuning and full-stack optimization. Finally, we present our progress on two selected advanced topics about modeling. We evaluated EBR on verticals for Facebook Search with significant metrics gains observed in online A/B experiments. We believe this paper will provide useful insights and experiences to help people on developing embedding-based retrieval systems in search engines.

北京阿比特科技有限公司