The nature of heterophilous graphs is significantly different with that of homophilous graphs, which causes difficulties in early graph neural network models and suggests aggregations beyond 1-hop neighborhood. In this paper, we develop a new way to implement multi-scale extraction via constructing Haar-type graph framelets with desired properties of permutation equivariance, efficiency, and sparsity, for deep learning tasks on graphs. We further design a graph framelet neural network model PEGFAN (Permutation Equivariant Graph Framelet Augmented Network) based on our constructed graph framelets. The experiments are conducted on a synthetic dataset and 9 benchmark datasets to compare performance with other state-of-the-art models. The result shows that our model can achieve best performance on certain datasets of heterophilous graphs (including the majority of heterophilous datasets with relatively larger sizes and denser connections) and competitive performance on the remaining.
Understanding how helpful a visualization is from experimental results is difficult because the observed performance is confounded with aspects of the study design, such as how useful the information that is visualized is for the task. We develop a rational agent framework for designing and interpreting visualization experiments. Our framework conceives two experiments with the same setup: one with behavioral agents (human subjects), and the other one with a hypothetical rational agent. A visualization is evaluated by comparing the expected performance of behavioral agents to that of a rational agent under different assumptions. Using recent visualization decision studies from the literature, we demonstrate how the framework can be used to pre-experimentally evaluate the experiment design by bounding the expected improvement in performance from having access to visualizations, and post-experimentally to deconfound errors of information extraction from errors of optimization, among other analyses.
Over the past few decades, ubiquitous sensors and systems have been an integral part of humans' everyday life. They augment human capabilities and provide personalized experiences across diverse contexts such as healthcare, education, and transportation. However, the widespread adoption of ubiquitous computing has also brought forth concerns regarding fairness and equitable treatment. As these systems can make automated decisions that impact individuals, it is essential to ensure that they do not perpetuate biases or discriminate against specific groups. While fairness in ubiquitous computing has been an acknowledged concern since the 1990s, it remains understudied within the field. To bridge this gap, we propose a framework that incorporates fairness considerations into system design, including prioritizing stakeholder perspectives, inclusive data collection, fairness-aware algorithms, appropriate evaluation criteria, enhancing human engagement while addressing privacy concerns, and interactive improvement and regular monitoring. Our framework aims to guide the development of fair and unbiased ubiquitous computing systems, ensuring equal treatment and positive societal impact.
As one of the energy-efficient alternatives of conventional neural networks (CNNs), spiking neural networks (SNNs) have gained more and more interest recently. To train the deep models, some effective batch normalization (BN) techniques are proposed in SNNs. All these BNs are suggested to be used after the convolution layer as usually doing in CNNs. However, the spiking neuron is much more complex with the spatio-temporal dynamics. The regulated data flow after the BN layer will be disturbed again by the membrane potential updating operation before the firing function, i.e., the nonlinear activation. Therefore, we advocate adding another BN layer before the firing function to normalize the membrane potential again, called MPBN. To eliminate the induced time cost of MPBN, we also propose a training-inference-decoupled re-parameterization technique to fold the trained MPBN into the firing threshold. With the re-parameterization technique, the MPBN will not introduce any extra time burden in the inference. Furthermore, the MPBN can also adopt the element-wised form, while these BNs after the convolution layer can only use the channel-wised form. Experimental results show that the proposed MPBN performs well on both popular non-spiking static and neuromorphic datasets. Our code is open-sourced at \href{//github.com/yfguo91/MPBN}{MPBN}.
It is frequently observed that overparameterized neural networks generalize well. Regarding such phenomena, existing theoretical work mainly devotes to linear settings or fully-connected neural networks. This paper studies the learning ability of an important family of deep neural networks, deep convolutional neural networks (DCNNs), under both underparameterized and overparameterized settings. We establish the first learning rates of underparameterized DCNNs without parameter or function variable structure restrictions presented in the literature. We also show that by adding well-defined layers to a non-interpolating DCNN, we can obtain some interpolating DCNNs that maintain the good learning rates of the non-interpolating DCNN. This result is achieved by a novel network deepening scheme designed for DCNNs. Our work provides theoretical verification of how overfitted DCNNs generalize well.
Sequential transfer optimization (STO), which aims to improve the optimization performance on a task at hand by exploiting the knowledge captured from several previously-solved optimization tasks stored in a database, has been gaining increasing research attention over the years. However, despite remarkable advances in algorithm design, the development of a systematic benchmark suite for comprehensive comparisons of STO algorithms received far less attention. Existing test problems are either simply generated by assembling other benchmark functions or extended from specific practical problems with limited variations. The relationships between the optimal solutions of the source and target tasks in these problems are always manually configured, limiting their ability to model different relationships presented in real-world problems. Consequently, the good performance achieved by an algorithm on these problems might be biased and could not be generalized to other problems. In light of the above, in this study, we first introduce four rudimentary concepts for characterizing STO problems (STOPs) and present an important problem feature, namely similarity distribution, which quantitatively delineates the relationship between the optima of the source and target tasks. Then, we propose the general design guidelines and a problem generator with superior scalability. Specifically, the similarity distribution of an STOP can be easily customized, enabling a continuous spectrum of representation of the diverse similarity relationships of real-world problems. Lastly, a benchmark suite with 12 STOPs featured by a variety of customized similarity relationships is developed using the proposed generator, which would serve as an arena for STO algorithms and provide more comprehensive evaluation results. The source code of the problem generator is available at //github.com/XmingHsueh/STOP-G.
Pragmatics is core to natural language, enabling speakers to communicate efficiently with structures like ellipsis and anaphora that can shorten utterances without loss of meaning. These structures require a listener to interpret an ambiguous form - like a pronoun - and infer the speaker's intended meaning - who that pronoun refers to. Despite potential to introduce ambiguity, anaphora is ubiquitous across human language. In an effort to better understand the origins of anaphoric structure in natural language, we look to see if analogous structures can emerge between artificial neural networks trained to solve a communicative task. We show that: first, despite the potential for increased ambiguity, languages with anaphoric structures are learnable by neural models. Second, anaphoric structures emerge between models 'naturally' without need for additional constraints. Finally, introducing an explicit efficiency pressure on the speaker increases the prevalence of these structures. We conclude that certain pragmatic structures straightforwardly emerge between neural networks, without explicit efficiency pressures, but that the competing needs of speakers and listeners conditions the degree and nature of their emergence.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.