In semiconductor manufacturing, wafer map defect pattern provides critical information for facility maintenance and yield management, so the classification of defect patterns is one of the most important tasks in the manufacturing process. In this paper, we propose a novel way to represent the shape of the defect pattern as a finite-dimensional vector, which will be used as an input for a neural network algorithm for classification. The main idea is to extract the topological features of each pattern by using the theory of persistent homology from topological data analysis (TDA). Through some experiments with a simulated dataset, we show that the proposed method is faster and much more efficient in training with higher accuracy, compared with the method using convolutional neural networks (CNN) which is the most common approach for wafer map defect pattern classification. Moreover, our method outperforms the CNN-based method when the number of training data is not enough and is imbalanced.
Novel class discovery (NCD) aims at learning a model that transfers the common knowledge from a class-disjoint labelled dataset to another unlabelled dataset and discovers new classes (clusters) within it. Many methods have been proposed as well as elaborate training pipelines and appropriate objectives and considerably boosted the performance on NCD tasks. Despite all this, we find that the existing methods do not sufficiently take advantage of the essence of the NCD setting. To this end, in this paper, we propose to model both inter-class and intra-class constraints in NCD based on the symmetric Kullback-Leibler divergence (sKLD). Specifically, we propose an inter-class sKLD constraint to effectively exploit the disjoint relationship between labelled and unlabelled classes, enforcing the separability for different classes in the embedding space. In addition, we present an intra-class sKLD constraint to explicitly constrain the intra-relationship between samples and their augmentations and ensure the stability of the training process at the same time. We conduct extensive experiments on the popular CIFAR10, CIFAR100 and ImageNet benchmarks and successfully demonstrate that our method can establish a new state of the art and can achieve significantly performance improvements, e.g., 3.6\%/3.7\% clustering accuracy improvements on CIFAR100-50 dataset split under the task-aware/-agnostic evaluation protocol, over previous state-of-the-art methods.
During the last decade, hyperspectral images have attracted increasing interest from researchers worldwide. They provide more detailed information about an observed area and allow an accurate target detection and precise discrimination of objects compared to classical RGB and multispectral images. Despite the great potentialities of hyperspectral technology, the analysis and exploitation of the large volume data remain a challenging task. The existence of irrelevant redundant and noisy images decreases the classification accuracy. As a result, dimensionality reduction is a mandatory step in order to select a minimal and effective images subset. In this paper, a new filter approach normalized mutual synergy (NMS) is proposed in order to detect relevant bands that are complementary in the class prediction better than the original hyperspectral cube data. The algorithm consists of two steps: images selection through normalized synergy information and pixel classification. The proposed approach measures the discriminative power of the selected bands based on a combination of their maximal normalized synergic information, minimum redundancy and maximal mutual information with the ground truth. A comparative study using the support vector machine (SVM) and k-nearest neighbor (KNN) classifiers is conducted to evaluate the proposed approach compared to the state of art band selection methods. Experimental results on three benchmark hyperspectral images proposed by the NASA "Aviris Indiana Pine", "Salinas" and "Pavia University" demonstrated the robustness, effectiveness and the discriminative power of the proposed approach over the literature approaches. Keywords: Hyperspectral images; target detection; pixel classification; dimensionality reduction; band selection; information theory; mutual information; normalized synergy
Dense prediction tasks such as depth perception and semantic segmentation are important applications in computer vision that have a concrete topological description in terms of partitioning an image into connected components or estimating a function with a small number of local extrema corresponding to objects in the image. We develop a form of topological regularization based on persistent homology that can be used in dense prediction tasks with these topological descriptions. Experimental results show that the output topology can also appear in the internal activations of trained neural networks which allows for a novel use of topological regularization to the internal states of neural networks during training, reducing the computational cost of the regularization. We demonstrate that this topological regularization of internal activations leads to improved convergence and test benchmarks on several problems and architectures.
Deformable shapes provide important and complex geometric features of objects presented in images. However, such information is oftentimes missing or underutilized as implicit knowledge in many image analysis tasks. This paper presents Geo-SIC, the first deep learning model to learn deformable shapes in a deformation space for an improved performance of image classification. We introduce a newly designed framework that (i) simultaneously derives features from both image and latent shape spaces with large intra-class variations; and (ii) gains increased model interpretability by allowing direct access to the underlying geometric features of image data. In particular, we develop a boosted classification network, equipped with an unsupervised learning of geometric shape representations characterized by diffeomorphic transformations within each class. In contrast to previous approaches using pre-extracted shapes, our model provides a more fundamental approach by naturally learning the most relevant shape features jointly with an image classifier. We demonstrate the effectiveness of our method on both simulated 2D images and real 3D brain magnetic resonance (MR) images. Experimental results show that our model substantially improves the image classification accuracy with an additional benefit of increased model interpretability. Our code is publicly available at //github.com/jw4hv/Geo-SIC
Compared with multi-class classification, multi-label classification that contains more than one class is more suitable in real life scenarios. Obtaining fully labeled high-quality datasets for multi-label classification problems, however, is extremely expensive, and sometimes even infeasible, with respect to annotation efforts, especially when the label spaces are too large. This motivates the research on partial-label classification, where only a limited number of labels are annotated and the others are missing. To address this problem, we first propose a pseudo-label based approach to reduce the cost of annotation without bringing additional complexity to the existing classification networks. Then we quantitatively study the impact of missing labels on the performance of classifier. Furthermore, by designing a novel loss function, we are able to relax the requirement that each instance must contain at least one positive label, which is commonly used in most existing approaches. Through comprehensive experiments on three large-scale multi-label image datasets, i.e. MS-COCO, NUS-WIDE, and Pascal VOC12, we show that our method can handle the imbalance between positive labels and negative labels, while still outperforming existing missing-label learning approaches in most cases, and in some cases even approaches with fully labeled datasets.
Zero-Shot Learning (ZSL) aims to transfer classification capability from seen to unseen classes. Recent methods have proved that generalization and specialization are two essential abilities to achieve good performance in ZSL. However, focusing on only one of the abilities may result in models that are either too general with degraded classification ability or too specialized to generalize to unseen classes. In this paper, we propose an end-to-end network, termed as BGSNet, which equips and balances generalization and specialization abilities at the instance and dataset level. Specifically, BGSNet consists of two branches: the Generalization Network (GNet), which applies episodic meta-learning to learn generalized knowledge, and the Balanced Specialization Network (BSNet), which adopts multiple attentive extractors to extract discriminative features and achieve instance-level balance. A novel self-adjusted diversity loss is designed to optimize BSNet with redundancy reduced and diversity boosted. We further propose a differentiable dataset-level balance and update the weights in a linear annealing schedule to simulate network pruning and thus obtain the optimal structure for BSNet with dataset-level balance achieved. Experiments on four benchmark datasets demonstrate our model's effectiveness. Sufficient component ablations prove the necessity of integrating and balancing generalization and specialization abilities.
This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs. Our method automatically assigns each interpretable filter in a high conv-layer with an object part of a certain category during the learning process. Such explicit knowledge representations in conv-layers of CNN help people clarify the logic encoded in the CNN, i.e., answering what patterns the CNN extracts from an input image and uses for prediction. We have tested our method using different benchmark CNNs with various structures to demonstrate the broad applicability of our method. Experiments have shown that our interpretable filters are much more semantically meaningful than traditional filters.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.
Text Classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.