Extremely large-scale array (XL-array) has emerged as a promising technology to enhance the spectrum efficiency and spatial resolution in future wireless networks, leading to a fundamental paradigm shift from conventional far-field communications towards the new near-field communications. Different from the existing works that mostly considered simultaneous wireless information and power transfer (SWIPT) in the far field, we consider in this paper a new and practical scenario, called mixed near- and far-field SWIPT, in which energy harvesting (EH) and information decoding (ID) receivers are located in the near- and far-field regions of the XL-array base station (BS), respectively. Specifically, we formulate an optimization problem to maximize the weighted sum-power harvested at all EH receivers by jointly designing the BS beam scheduling and power allocation, under the constraints on the ID sum-rate and BS transmit power. To solve this nonconvex optimization problem, an efficient algorithm is proposed to obtain a suboptimal solution by leveraging the binary variable elimination and successive convex approximation methods. Numerical results demonstrate that our proposed joint design achieves substantial performance gain over other benchmark schemes.
Underwater degraded images greatly challenge existing algorithms to detect objects of interest. Recently, researchers attempt to adopt attention mechanisms or composite connections for improving the feature representation of detectors. However, this solution does \textit{not} eliminate the impact of degradation on image content such as color and texture, achieving minimal improvements. Another feasible solution for underwater object detection is to develop sophisticated deep architectures in order to enhance image quality or features. Nevertheless, the visually appealing output of these enhancement modules do \textit{not} necessarily generate high accuracy for deep detectors. More recently, some multi-task learning methods jointly learn underwater detection and image enhancement, accessing promising improvements. Typically, these methods invoke huge architecture and expensive computations, rendering inefficient inference. Definitely, underwater object detection and image enhancement are two interrelated tasks. Leveraging information coming from the two tasks can benefit each task. Based on these factual opinions, we propose a bilevel optimization formulation for jointly learning underwater object detection and image enhancement, and then unroll to a dual perception network (DPNet) for the two tasks. DPNet with one shared module and two task subnets learns from the two different tasks, seeking a shared representation. The shared representation provides more structural details for image enhancement and rich content information for object detection. Finally, we derive a cooperative training strategy to optimize parameters for DPNet. Extensive experiments on real-world and synthetic underwater datasets demonstrate that our method outputs visually favoring images and higher detection accuracy.
As a key pillar technology for the future 6G networks, terahertz (THz) communication can provide high-capacity transmissions, but suffers from severe propagation loss and line-of-sight (LoS) blockage that limits the network coverage. Narrow beams are required to compensate for the loss, but they in turn bring in beam misalignment challenge that degrades the THz network performance. The high sensing accuracy of THz signals enables integrated sensing and communication (ISAC) technology to assist the LoS blockage and user mobility-induced beam misalignment, enhancing THz network coverage. In line with the 5G beam management, we propose a joint synchronization signal block (SSB) and reference signal (RS)-based sensing (JSRS) scheme to predict the need for beam switches, and thus prevent beam misalignment. We further design an optimal sensing signal pattern that minimizes beam misalignment with fixed sensing resources, which reveals design insights into the time-to-frequency allocation. We derive expressions for the coverage probability and spatial throughput, which provide instructions on the ISAC-THz network deployment and further enable evaluations for the sensing benefit in THz networks. Numerical results show that the JSRS scheme is effective and highly compatible with the 5G air interface. Averaged in tested urban use cases, JSRS achieves near-ideal performance and reduces around 80% of beam misalignment, and enhances the coverage probability by about 75%, compared to the network with 5G-required positioning ability.
In-band full-duplex relay (FDR) has attracted much attention as an effective solution to improve the coverage and spectral efficiency in wireless communication networks. The basic problem for FDR transmission is how to eliminate the inherent self-interference and re-use the residual self-interference (RSI) at the relay to improve the end-to-end performance. Considering the RSI at the FDR, the overall equivalent channel can be modeled as an infinite impulse response (IIR) channel. For this IIR channel, a joint design for precoding, power gain control and equalization of cooperative OFDM relay systems is presented. Compared with the traditional OFDM systems, the length of the guard interval for the proposed design can be distinctly reduced, thereby improving the spectral efficiency. By analyzing the noise sources, this paper evaluates the signal to noise ratio (SNR) of the proposed scheme and presents a power gain control algorithm at the FDR. Compared with the existing schemes, the proposed scheme shows a superior bit error rate (BER) performance.
Order execution is a fundamental task in quantitative finance, aiming at finishing acquisition or liquidation for a number of trading orders of the specific assets. Recent advance in model-free reinforcement learning (RL) provides a data-driven solution to the order execution problem. However, the existing works always optimize execution for an individual order, overlooking the practice that multiple orders are specified to execute simultaneously, resulting in suboptimality and bias. In this paper, we first present a multi-agent RL (MARL) method for multi-order execution considering practical constraints. Specifically, we treat every agent as an individual operator to trade one specific order, while keeping communicating with each other and collaborating for maximizing the overall profits. Nevertheless, the existing MARL algorithms often incorporate communication among agents by exchanging only the information of their partial observations, which is inefficient in complicated financial market. To improve collaboration, we then propose a learnable multi-round communication protocol, for the agents communicating the intended actions with each other and refining accordingly. It is optimized through a novel action value attribution method which is provably consistent with the original learning objective yet more efficient. The experiments on the data from two real-world markets have illustrated superior performance with significantly better collaboration effectiveness achieved by our method.
Mobile edge computing (MEC) enables low-latency and high-bandwidth applications by bringing computation and data storage closer to end-users. Intelligent computing is an important application of MEC, where computing resources are used to solve intelligent task-related problems based on task requirements. However, efficiently offloading computing and allocating resources for intelligent tasks in MEC systems is a challenging problem due to complex interactions between task requirements and MEC resources. To address this challenge, we investigate joint computing offloading and resource allocation for intelligent tasks in MEC systems. Our goal is to optimize system utility by jointly considering computing accuracy and task delay to achieve maximum system performance. We focus on classification intelligence tasks and formulate an optimization problem that considers both the accuracy requirements of tasks and the parallel computing capabilities of MEC systems. To solve the optimization problem, we decompose it into three subproblems: subcarrier allocation, computing capacity allocation, and compression offloading. We use convex optimization and successive convex approximation to derive closed-form expressions for the subcarrier allocation, offloading decisions, computing capacity, and compressed ratio. Based on our solutions, we design an efficient computing offloading and resource allocation algorithm for intelligent tasks in MEC systems. Our simulation results demonstrate that our proposed algorithm significantly improves the performance of intelligent tasks in MEC systems and achieves a flexible trade-off between system revenue and cost considering intelligent tasks compared with the benchmarks.
In this paper, a hybrid non-orthogonal multiple access (NOMA) framework for the simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) enhanced cell-edge communication is investigated. Specifically, one transmitted user and one reflected user are paired as one NOMA-pair, while multiple NOMA-pairs are served via time division multiple access (TDMA). The objective is to maximize the minimum downlink rate by jointly optimizing the user pairing, decoding order, passive beamforming, power and time allocation. A novel two-layer iterative algorithm is proposed to solve the highly coupled problem. Simulation results show that: 1) the proposed framework outperforms the conventional reflecting-only-RIS-based and the OMA-based frameworks; 2) the beamforming design and power allocation dominate the achieved performance; 3) increasing the number of passive elements and shortening the distance between BS and STAR-RIS are two effective ways to further improve the performance.
As Internet of Things (IoT) devices proliferate, sustainable methods for powering them are becoming indispensable. The wireless provision of power enables battery-free operation and is crucial for complying with weight and size restrictions. For the energy harvesting components of these devices to be small, a high operating frequency is necessary. In conjunction with an electrically large antenna, the receivers may be located in the radiating near-field (Fresnel) region, e.g., in indoor scenarios. In this paper, we propose a wireless power transfer system to ensure a reliable supply of power to an arbitrary number of mobile, low-power, and single-antenna receivers, which are located in a three-dimensional cuboid room. To this end, we formulate a max-min optimisation problem to determine the optimal allocation of transmit power among an infinite number of radiating elements of the system's transmit antenna array. Thereby, the optimal deployment, i.e, the set of transmit antenna positions that are allocated non-zero transmit power according to the optimal allocation, is obtained implicitly. Generally, the set of transmit antenna positions corresponding to the optimal deployment has Lebesgue measure zero and the closure of the set has empty interior. Moreover, for a one-dimensional transmit antenna array, the set of transmit antenna positions is proven to be finite. The proposed optimal solution is validated through simulation. Simulation results indicate that the optimal deployment requires a finite number of transmit antennas and depends on the geometry of the environment and the dimensionality of the transmit antenna array. The robustness of the solution, which is obtained under a line-of-sight (LoS) assumption between the transmitter and receiver, is assessed in an isotropic scattering environment containing a strong LoS component.
In commercial unmanned aerial vehicle (UAV) applications, one of the main restrictions is UAVs' limited battery endurance when executing persistent tasks. With the mature of wireless power transfer (WPT) technologies, by leveraging ground vehicles mounted with WPT facilities on their proofs, we propose a mobile and collaborative recharging scheme for UAVs in an on-demand manner. Specifically, we first present a novel air-ground cooperative UAV recharging framework, where ground vehicles cooperatively share their idle wireless chargers to UAVs and a swarm of UAVs in the task area compete to get recharging services. Considering the mobility dynamics and energy competitions, we formulate an energy scheduling problem for UAVs and vehicles under practical constraints. A fair online auction-based solution with low complexity is also devised to allocate and price idle wireless chargers on vehicular proofs in real time. We rigorously prove that the proposed scheme is strategy-proof, envy-free, and produces stable allocation outcomes. The first property enforces that truthful bidding is the dominant strategy for participants, the second ensures that no user is better off by exchanging his allocation with another user when the auction ends, while the third guarantees the matching stability between UAVs and UGVs. Extensive simulations validate that the proposed scheme outperforms benchmarks in terms of energy allocation efficiency and UAV's utility.
The hardware computing landscape is changing. What used to be distributed systems can now be found on a chip with highly configurable, diverse, specialized and general purpose units. Such Systems-on-a-Chip (SoC) are used to control today's cyber-physical systems, being the building blocks of critical infrastructures. They are deployed in harsh environments and are connected to the cyberspace, which makes them exposed to both accidental faults and targeted cyberattacks. This is in addition to the changing fault landscape that continued technology scaling, emerging devices and novel application scenarios will bring. In this paper, we discuss how the very features, distributed, parallelized, reconfigurable, heterogeneous, that cause many of the imminent and emerging security and resilience challenges, also open avenues for their cure though SoC replication, diversity, rejuvenation, adaptation, and hybridization. We show how to leverage these techniques at different levels across the entire SoC hardware/software stack, calling for more research on the topic.
Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.