亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Research community evaluations in information retrieval, such as NIST's Text REtrieval Conference (TREC), build reusable test collections by pooling document rankings submitted by many teams. Naturally, the quality of the resulting test collection thus greatly depends on the number of participating teams and the quality of their submitted runs. In this work, we investigate: i) how the number of participants, coupled with other factors, affects the quality of a test collection; and ii) whether the quality of a test collection can be inferred prior to collecting relevance judgments from human assessors. Experiments conducted on six TREC collections illustrate how the number of teams interacts with various other factors to influence the resulting quality of test collections. We also show that the reusability of a test collection can be predicted with high accuracy when the same document collection is used for successive years in an evaluation campaign, as is common in TREC.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · INFORMS · Performer · binary · 查全率/召回率 ·
2022 年 2 月 4 日

Requirements identification in textual documents or extraction is a tedious and error prone task that many researchers suggest automating. We manually annotated the PURE dataset and thus created a new one containing both requirements and non-requirements. Using this dataset, we fine-tuned the BERT model and compare the results with several baselines such as fastText and ELMo. In order to evaluate the model on semantically more complex documents we compare the PURE dataset results with experiments on Request For Information (RFI) documents. The RFIs often include software requirements, but in a less standardized way. The fine-tuned BERT showed promising results on PURE dataset on the binary sentence classification task. Comparing with previous and recent studies dealing with constrained inputs, our approach demonstrates high performance in terms of precision and recall metrics, while being agnostic to the unstructured textual input.

In recent years, researchers have become increasingly interested in speaker extraction (SE), which is the task of extracting the speech of a target speaker from a mixture of interfering speakers with the help of auxiliary information about the target speaker. Several forms of auxiliary information have been employed in single-channel SE, such as a speech snippet enrolled from the target speaker or visual information corresponding to the spoken utterance. Many SE studies have reported performance improvement compared to speaker separation (SS) methods with oracle selection, arguing that this is due to the use of auxiliary information. However, such works have not considered state-of-the-art SS methods that have shown impressive separation performance. In this paper, we revise and examine the role of the auxiliary information in SE. Specifically, we compare the performance of two SE systems (audio-based and video-based) with SS using a common framework that utilizes the state-of-the-art dual-path recurrent neural network as the main learning machine. In addition, we study how much the considered SE systems rely on the auxiliary information by analyzing the systems' output for random auxiliary signals. Experimental evaluation on various datasets suggests that the main purpose of the auxiliary information in the considered SE systems is only to specify the target speaker in the mixture and that it does not provide consistent extraction performance gain when compared to the uninformed SS system.

The usage of smartphone-collected respiratory sound, trained with deep learning models, for detecting and classifying COVID-19 becomes popular recently. It removes the need for in-person testing procedures especially for rural regions where related medical supplies, experienced workers, and equipment are limited. However, existing sound-based diagnostic approaches are trained in a fully supervised manner, which requires large scale well-labelled data. It is critical to discover new methods to leverage unlabelled respiratory data, which can be obtained more easily. In this paper, we propose a novel self-supervised learning enabled framework for COVID-19 cough classification. A contrastive pre-training phase is introduced to train a Transformer-based feature encoder with unlabelled data. Specifically, we design a random masking mechanism to learn robust representations of respiratory sounds. The pre-trained feature encoder is then fine-tuned in the downstream phase to perform cough classification. In addition, different ensembles with varied random masking rates are also explored in the downstream phase. Through extensive evaluations, we demonstrate that the proposed contrastive pre-training, the random masking mechanism, and the ensemble architecture contribute to improving cough classification performance.

The problem of knowledge-based visual question answering involves answering questions that require external knowledge in addition to the content of the image. Such knowledge typically comes in a variety of forms, including visual, textual, and commonsense knowledge. The use of more knowledge sources, however, also increases the chance of retrieving more irrelevant or noisy facts, making it difficult to comprehend the facts and find the answer. To address this challenge, we propose Multi-modal Answer Validation using External knowledge (MAVEx), where the idea is to validate a set of promising answer candidates based on answer-specific knowledge retrieval. This is in contrast to existing approaches that search for the answer in a vast collection of often irrelevant facts. Our approach aims to learn which knowledge source should be trusted for each answer candidate and how to validate the candidate using that source. We consider a multi-modal setting, relying on both textual and visual knowledge resources, including images searched using Google, sentences from Wikipedia articles, and concepts from ConceptNet. Our experiments with OK-VQA, a challenging knowledge-based VQA dataset, demonstrate that MAVEx achieves new state-of-the-art results.

Corpus-based set expansion (i.e., finding the "complete" set of entities belonging to the same semantic class, based on a given corpus and a tiny set of seeds) is a critical task in knowledge discovery. It may facilitate numerous downstream applications, such as information extraction, taxonomy induction, question answering, and web search. To discover new entities in an expanded set, previous approaches either make one-time entity ranking based on distributional similarity, or resort to iterative pattern-based bootstrapping. The core challenge for these methods is how to deal with noisy context features derived from free-text corpora, which may lead to entity intrusion and semantic drifting. In this study, we propose a novel framework, SetExpan, which tackles this problem, with two techniques: (1) a context feature selection method that selects clean context features for calculating entity-entity distributional similarity, and (2) a ranking-based unsupervised ensemble method for expanding entity set based on denoised context features. Experiments on three datasets show that SetExpan is robust and outperforms previous state-of-the-art methods in terms of mean average precision.

Commonsense knowledge plays an important role when we read. The performance of BERT on SQuAD dataset shows that the accuracy of BERT can be better than human users. However, it does not mean that computers can surpass the human being in reading comprehension. CommonsenseQA is a large-scale dataset which is designed based on commonsense knowledge. BERT only achieved an accuracy of 55.9% on it. The result shows that computers cannot apply commonsense knowledge like human beings to answer questions. Comprehension Ability Test (CAT) divided the reading comprehension ability at four levels. We can achieve human like comprehension ability level by level. BERT has performed well at level 1 which does not require common knowledge. In this research, we propose a system which aims to allow computers to read articles and answer related questions with commonsense knowledge like a human being for CAT level 2. This system consists of three parts. Firstly, we built a commonsense knowledge graph; and then automatically constructed the commonsense knowledge question dataset according to it. Finally, BERT is combined with the commonsense knowledge to achieve the reading comprehension ability at CAT level 2. Experiments show that it can pass the CAT as long as the required common knowledge is included in the knowledge base.

Information Extraction (IE) refers to automatically extracting structured relation tuples from unstructured texts. Common IE solutions, including Relation Extraction (RE) and open IE systems, can hardly handle cross-sentence tuples, and are severely restricted by limited relation types as well as informal relation specifications (e.g., free-text based relation tuples). In order to overcome these weaknesses, we propose a novel IE framework named QA4IE, which leverages the flexible question answering (QA) approaches to produce high quality relation triples across sentences. Based on the framework, we develop a large IE benchmark with high quality human evaluation. This benchmark contains 293K documents, 2M golden relation triples, and 636 relation types. We compare our system with some IE baselines on our benchmark and the results show that our system achieves great improvements.

For extracting meaningful topics from texts, their structures should be considered properly. In this paper, we aim to analyze structured time-series documents such as a collection of news articles and a series of scientific papers, wherein topics evolve along time depending on multiple topics in the past and are also related to each other at each time. To this end, we propose a dynamic and static topic model, which simultaneously considers the dynamic structures of the temporal topic evolution and the static structures of the topic hierarchy at each time. We show the results of experiments on collections of scientific papers, in which the proposed method outperformed conventional models. Moreover, we show an example of extracted topic structures, which we found helpful for analyzing research activities.

The current trend of extractive question answering (QA) heavily relies on the joint encoding of the document and the question. In this paper, we formalize a new modular variant of extractive QA, Phrase-Indexed Question Answering (PI-QA), that enforces complete independence of the document encoder from the question by building the standalone representation of the document discourse, a key research goal in machine reading comprehension. That is, the document encoder generates an index vector for each answer candidate phrase in the document; at inference time, each question is mapped to the same vector space and the answer with the nearest index vector is obtained. The formulation also implies a significant scalability advantage since the index vectors can be pre-computed and hashed offline for efficient retrieval. We experiment with baseline models for the new task, which achieve a reasonable accuracy but significantly underperform unconstrained QA models. We invite the QA research community to engage in PI-QA for closing the gap.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司