Statistical hypothesis testing and effect size measurement are routine parts of quantitative research. Advancements in computer processing power have greatly improved the capability of statistical inference through the availability of resampling methods. However, many of the statistical practices used today are based on traditional, parametric methods that rely on assumptions about the underlying population. These assumptions may not always be valid, leading to inaccurate results and misleading interpretations. Permutation testing, on the other hand, generates the sampling distribution empirically by permuting the observed data, providing distribution-free hypothesis testing. Furthermore, this approach lends itself to a powerful method for multiple comparison correction - known as max correction - which is less prone to type II errors than conventional correction methods. Parametric methods have also traditionally been utilized for estimating the confidence interval of various test statistics and effect size measures. However, these too can be estimated empirically using permutation or bootstrapping techniques. Whilst resampling methods are generally considered preferable, many popular programming languages and statistical software packages lack efficient implementations. Here, we introduce PERMUTOOLS, a MATLAB package for multivariate permutation testing and effect size measurement.
Despite achieving promising fairness-error trade-offs, in-processing mitigation techniques for group fairness cannot be employed in numerous practical applications with limited computation resources or no access to the training pipeline of the prediction model. In these situations, post-processing is a viable alternative. However, current methods are tailored to specific problem settings and fairness definitions and hence, are not as broadly applicable as in-processing. In this work, we propose a framework that turns any regularized in-processing method into a post-processing approach. This procedure prescribes a way to obtain post-processing techniques for a much broader range of problem settings than the prior post-processing literature. We show theoretically and through extensive experiments that our framework preserves the good fairness-error trade-offs achieved with in-processing and can improve over the effectiveness of prior post-processing methods. Finally, we demonstrate several advantages of a modular mitigation strategy that disentangles the training of the prediction model from the fairness mitigation, including better performance on tasks with partial group labels.
Product embedding serves as a cornerstone for a wide range of applications in eCommerce. The product embedding learned from multiple modalities shows significant improvement over that from a single modality, since different modalities provide complementary information. However, some modalities are more informatively dominant than others. How to teach a model to learn embedding from different modalities without neglecting information from the less dominant modality is challenging. We present an image-text embedding model (ITEm), an unsupervised learning method that is designed to better attend to image and text modalities. We extend BERT by (1) learning an embedding from text and image without knowing the regions of interest; (2) training a global representation to predict masked words and to construct masked image patches without their individual representations. We evaluate the pre-trained ITEm on two tasks: the search for extremely similar products and the prediction of product categories, showing substantial gains compared to strong baseline models.
Vehicular networks use Decentralized Congestion Control (DCC) mechanisms to operate effectively, but this mechanism may introduce queuing delays. Freshness of Cooperative Awareness Messages (CAMs) is critical for their usefulness. In this letter we explore how the presence of other types of traffic additional to CAMs, even with lower priorities, has an impact on the freshness of CAM messages due to DCC queuing. Finally, we propose Generate-on-Time (GoT), which is a simple mechanism that reduces DCC queuing delays for CAM messages without introducing any downside in other performance metrics.
The relevant features for a machine learning task may arrive as one or more continuous streams of data. Serving machine learning models over streams of data creates a number of interesting systems challenges in managing data routing, time-synchronization, and rate control. This paper presents EdgeServe, a distributed streaming system that can serve predictions from machine learning models in real time. We evaluate EdgeServe on three streaming prediction tasks: (1) human activity recognition, (2) autonomous driving, and (3) network intrusion detection.
As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.
The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.