Robotic coaches have been recently investigated to promote mental well-being in various contexts such as workplaces and homes. With the widespread use of Large Language Models (LLMs), HRI researchers are called to consider language appropriateness when using such generated language for robotic mental well-being coaches in the real world. Therefore, this paper presents the first work that investigated the language appropriateness of robot mental well-being coach in the workplace. To this end, we conducted an empirical study that involved 17 employees who interacted over 4 weeks with a robotic mental well-being coach equipped with LLM-based capabilities. After the study, we individually interviewed them and we conducted a focus group of 1.5 hours with 11 of them. The focus group consisted of: i) an ice-breaking activity, ii) evaluation of robotic coach language appropriateness in various scenarios, and iii) listing shoulds and shouldn'ts for designing appropriate robotic coach language for mental well-being. From our qualitative evaluation, we found that a language-appropriate robotic coach should (1) ask deep questions which explore feelings of the coachees, rather than superficial questions, (2) express and show emotional and empathic understanding of the context, and (3) not make any assumptions without clarifying with follow-up questions to avoid bias and stereotyping. These results can inform the design of language-appropriate robotic coach to promote mental well-being in real-world contexts.
Robots need to have a memory of previously observed, but currently occluded objects to work reliably in realistic environments. We investigate the problem of encoding object-oriented memory into a multi-object manipulation reasoning and planning framework. We propose DOOM and LOOM, which leverage transformer relational dynamics to encode the history of trajectories given partial-view point clouds and an object discovery and tracking engine. Our approaches can perform multiple challenging tasks including reasoning with occluded objects, novel objects appearance, and object reappearance. Throughout our extensive simulation and real-world experiments, we find that our approaches perform well in terms of different numbers of objects and different numbers of distractor actions. Furthermore, we show our approaches outperform an implicit memory baseline.
Tools are essential for large language models (LLMs) to acquire up-to-date information and take consequential actions in external environments. Existing work on tool-augmented LLMs primarily focuses on the broad coverage of tools and the flexibility of adding new tools. However, a critical aspect that has surprisingly been understudied is simply how accurately an LLM uses tools for which it has been trained. We find that existing LLMs, including GPT-4 and open-source LLMs specifically fine-tuned for tool use, only reach a correctness rate in the range of 30% to 60%, far from reliable use in practice. We propose a biologically inspired method for tool-augmented LLMs, simulated trial and error (STE), that orchestrates three key mechanisms for successful tool use behaviors in the biological system: trial and error, imagination, and memory. Specifically, STE leverages an LLM's 'imagination' to simulate plausible scenarios for using a tool, after which the LLM interacts with the tool to learn from its execution feedback. Both short-term and long-term memory are employed to improve the depth and breadth of the exploration, respectively. Comprehensive experiments on ToolBench show that STE substantially improves tool learning for LLMs under both in-context learning and fine-tuning settings, bringing a boost of 46.7% to Mistral-Instruct-7B and enabling it to outperform GPT-4. We also show effective continual learning of tools via a simple experience replay strategy.
Collaborative competitions have gained popularity in the scientific and technological fields. These competitions involve defining tasks, selecting evaluation scores, and devising result verification methods. In the standard scenario, participants receive a training set and are expected to provide a solution for a held-out dataset kept by organizers. An essential challenge for organizers arises when comparing algorithms' performance, assessing multiple participants, and ranking them. Statistical tools are often used for this purpose; however, traditional statistical methods often fail to capture decisive differences between systems' performance. This manuscript describes an evaluation methodology for statistically analyzing competition results and competition. The methodology is designed to be universally applicable; however, it is illustrated using eight natural language competitions as case studies involving classification and regression problems. The proposed methodology offers several advantages, including off-the-shell comparisons with correction mechanisms and the inclusion of confidence intervals. Furthermore, we introduce metrics that allow organizers to assess the difficulty of competitions. Our analysis shows the potential usefulness of our methodology for effectively evaluating competition results.
Skiplists have become prevalent in systems. The main advantages of skiplists are their simplicity and ease of implementation, and the ability to support operations in the same asymptotic complexities as their tree-based counterparts. In this survey, we explore skiplists and their many variants. We highlight many scenarios of how skiplists are useful and fit well in these usage scenarios. We study several extensions to skiplists to make them fit for more applications, e.g., their use in the multi-dimensional space, network overlaying algorithms, as well as serving as indexes in database systems. Besides, we also discuss systems that adopt the idea of skiplists and apply the probabilistic skip pattern into their designs.
We study a setting in which a community wishes to identify a strongly supported proposal from a space of alternatives, in order to change the status quo. We describe a deliberation process in which agents dynamically form coalitions around proposals that they prefer over the status quo. We formulate conditions on the space of proposals and on the ways in which coalitions are formed that guarantee deliberation to succeed, that is, to terminate by identifying a proposal with the largest possible support. Our results provide theoretical foundations for the analysis of deliberative processes such as the ones that take place in online systems for democratic deliberation support.
Theoretical linguists have suggested that some languages (e.g., Chinese and Japanese) are "cooler" than other languages based on the observation that the intended meaning of phrases in these languages depends more on their contexts. As a result, many expressions in these languages are shortened, and their meaning is inferred from the context. In this paper, we focus on the omission of the plurality and definiteness markers in Chinese noun phrases (NPs) to investigate the predictability of their intended meaning given the contexts. To this end, we built a corpus of Chinese NPs, each of which is accompanied by its corresponding context, and by labels indicating its singularity/plurality and definiteness/indefiniteness. We carried out corpus assessments and analyses. The results suggest that Chinese speakers indeed drop plurality and definiteness markers very frequently. Building on the corpus, we train a bank of computational models using both classic machine learning models and state-of-the-art pre-trained language models to predict the plurality and definiteness of each NP. We report on the performance of these models and analyse their behaviours.
This work is an attempt to introduce a comprehensive benchmark for Arabic speech recognition, specifically tailored to address the challenges of telephone conversations in Arabic language. Arabic, characterized by its rich dialectal diversity and phonetic complexity, presents a number of unique challenges for automatic speech recognition (ASR) systems. These challenges are further amplified in the domain of telephone calls, where audio quality, background noise, and conversational speech styles negatively affect recognition accuracy. Our work aims to establish a robust benchmark that not only encompasses the broad spectrum of Arabic dialects but also emulates the real-world conditions of call-based communications. By incorporating diverse dialectical expressions and accounting for the variable quality of call recordings, this benchmark seeks to provide a rigorous testing ground for the development and evaluation of ASR systems capable of navigating the complexities of Arabic speech in telephonic contexts. This work also attempts to establish a baseline performance evaluation using state-of-the-art ASR technologies.
VPN adoption has seen steady growth over the past decade due to increased public awareness of privacy and surveillance threats. In response, certain governments are attempting to restrict VPN access by identifying connections using "dual use" DPI technology. To investigate the potential for VPN blocking, we develop mechanisms for accurately fingerprinting connections using OpenVPN, the most popular protocol for commercial VPN services. We identify three fingerprints based on protocol features such as byte pattern, packet size, and server response. Playing the role of an attacker who controls the network, we design a two-phase framework that performs passive fingerprinting and active probing in sequence. We evaluate our framework in partnership with a million-user ISP and find that we identify over 85% of OpenVPN flows with only negligible false positives, suggesting that OpenVPN-based services can be effectively blocked with little collateral damage. Although some commercial VPNs implement countermeasures to avoid detection, our framework successfully identified connections to 34 out of 41 "obfuscated" VPN configurations. We discuss the implications of the VPN fingerprintability for different threat models and propose short-term defenses. In the longer term, we urge commercial VPN providers to be more transparent about their obfuscation approaches and to adopt more principled detection countermeasures, such as those developed in censorship circumvention research.
For robots to perform assistive tasks in unstructured home environments, they must learn and reason on the semantic knowledge of the environments. Despite a resurgence in the development of semantic reasoning architectures, these methods assume that all the training data is available a priori. However, each user's environment is unique and can continue to change over time, which makes these methods unsuitable for personalized home service robots. Although research in continual learning develops methods that can learn and adapt over time, most of these methods are tested in the narrow context of object classification on static image datasets. In this paper, we combine ideas from continual learning, semantic reasoning, and interactive machine learning literature and develop a novel interactive continual learning architecture for continual learning of semantic knowledge in a home environment through human-robot interaction. The architecture builds on core cognitive principles of learning and memory for efficient and real-time learning of new knowledge from humans. We integrate our architecture with a physical mobile manipulator robot and perform extensive system evaluations in a laboratory environment over two months. Our results demonstrate the effectiveness of our architecture to allow a physical robot to continually adapt to the changes in the environment from limited data provided by the users (experimenters), and use the learned knowledge to perform object fetching tasks.
Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.