亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A key task of data science is to identify relevant features linked to certain output variables that are supposed to be modeled or predicted. To obtain a small but meaningful model, it is important to find stochastically independent variables capturing all the information necessary to model or predict the output variables sufficiently. Therefore, we introduce in this work a framework to detect linear and non-linear dependencies between different features. As we will show, features that are actually functions of other features do not represent further information. Consequently, a model reduction neglecting such features conserves the relevant information, reduces noise and thus improves the quality of the model. Furthermore, a smaller model makes it easier to adopt a model of a given system. In addition, the approach structures dependencies within all the considered features. This provides advantages for classical modeling starting from regression ranging to differential equations and for machine learning. To show the generality and applicability of the presented framework 2154 features of a data center are measured and a model for classification for faulty and non-faulty states of the data center is set up. This number of features is automatically reduced by the framework to 161 features. The prediction accuracy for the reduced model even improves compared to the model trained on the total number of features. A second example is the analysis of a gene expression data set where from 9513 genes 9 genes are extracted from whose expression levels two cell clusters of macrophages can be distinguished.

相關內容

Transferability of adversarial examples is of central importance for attacking an unknown model, which facilitates adversarial attacks in more practical scenarios, e.g., black-box attacks. Existing transferable attacks tend to craft adversarial examples by indiscriminately distorting features to degrade prediction accuracy in a source model without aware of intrinsic features of objects in the images. We argue that such brute-force degradation would introduce model-specific local optimum into adversarial examples, thus limiting the transferability. By contrast, we propose the Feature Importance-aware Attack (FIA), which disrupts important object-aware features that dominate model decisions consistently. More specifically, we obtain feature importance by introducing the aggregate gradient, which averages the gradients with respect to feature maps of the source model, computed on a batch of random transforms of the original clean image. The gradients will be highly correlated to objects of interest, and such correlation presents invariance across different models. Besides, the random transforms will preserve intrinsic features of objects and suppress model-specific information. Finally, the feature importance guides to search for adversarial examples towards disrupting critical features, achieving stronger transferability. Extensive experimental evaluation demonstrates the effectiveness and superior performance of the proposed FIA, i.e., improving the success rate by 9.5% against normally trained models and 12.8% against defense models as compared to the state-of-the-art transferable attacks. Code is available at: //github.com/hcguoO0/FIA

Overparametrized neural networks tend to perfectly fit noisy training data yet generalize well on test data. Inspired by this empirical observation, recent work has sought to understand this phenomenon of benign overfitting or harmless interpolation in the much simpler linear model. Previous theoretical work critically assumes that either the data features are statistically independent or the input data is high-dimensional; this precludes general nonparametric settings with structured feature maps. In this paper, we present a general and flexible framework for upper bounding regression and classification risk in a reproducing kernel Hilbert space. A key contribution is that our framework describes precise sufficient conditions on the data Gram matrix under which harmless interpolation occurs. Our results recover prior independent-features results (with a much simpler analysis), but they furthermore show that harmless interpolation can occur in more general settings such as features that are a bounded orthonormal system. Furthermore, our results show an asymptotic separation between classification and regression performance in a manner that was previously only shown for Gaussian features.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

The spatial convolution layer which is widely used in the Graph Neural Networks (GNNs) aggregates the feature vector of each node with the feature vectors of its neighboring nodes. The GNN is not aware of the locations of the nodes in the global structure of the graph and when the local structures corresponding to different nodes are similar to each other, the convolution layer maps all those nodes to similar or same feature vectors in the continuous feature space. Therefore, the GNN cannot distinguish two graphs if their difference is not in their local structures. In addition, when the nodes are not labeled/attributed the convolution layers can fail to distinguish even different local structures. In this paper, we propose an effective solution to address this problem of the GNNs. The proposed approach leverages a spatial representation of the graph which makes the neural network aware of the differences between the nodes and also their locations in the graph. The spatial representation which is equivalent to a point-cloud representation of the graph is obtained by a graph embedding method. Using the proposed approach, the local feature extractor of the GNN distinguishes similar local structures in different locations of the graph and the GNN infers the topological structure of the graph from the spatial distribution of the locally extracted feature vectors. Moreover, the spatial representation is utilized to simplify the graph down-sampling problem. A new graph pooling method is proposed and it is shown that the proposed pooling method achieves competitive or better results in comparison with the state-of-the-art methods.

Deep structured models are widely used for tasks like semantic segmentation, where explicit correlations between variables provide important prior information which generally helps to reduce the data needs of deep nets. However, current deep structured models are restricted by oftentimes very local neighborhood structure, which cannot be increased for computational complexity reasons, and by the fact that the output configuration, or a representation thereof, cannot be transformed further. Very recent approaches which address those issues include graphical model inference inside deep nets so as to permit subsequent non-linear output space transformations. However, optimization of those formulations is challenging and not well understood. Here, we develop a novel model which generalizes existing approaches, such as structured prediction energy networks, and discuss a formulation which maintains applicability of existing inference techniques.

Automatic neural architecture design has shown its potential in discovering powerful neural network architectures. Existing methods, no matter based on reinforcement learning or evolutionary algorithms (EA), conduct architecture search in a discrete space, which is highly inefficient. In this paper, we propose a simple and efficient method to automatic neural architecture design based on continuous optimization. We call this new approach neural architecture optimization (NAO). There are three key components in our proposed approach: (1) An encoder embeds/maps neural network architectures into a continuous space. (2) A predictor takes the continuous representation of a network as input and predicts its accuracy. (3) A decoder maps a continuous representation of a network back to its architecture. The performance predictor and the encoder enable us to perform gradient based optimization in the continuous space to find the embedding of a new architecture with potentially better accuracy. Such a better embedding is then decoded to a network by the decoder. Experiments show that the architecture discovered by our method is very competitive for image classification task on CIFAR-10 and language modeling task on PTB, outperforming or on par with the best results of previous architecture search methods with a significantly reduction of computational resources. Specifically we obtain $2.07\%$ test set error rate for CIFAR-10 image classification task and $55.9$ test set perplexity of PTB language modeling task. The best discovered architectures on both tasks are successfully transferred to other tasks such as CIFAR-100 and WikiText-2.

Because of continuous advances in mathematical programing, Mix Integer Optimization has become a competitive vis-a-vis popular regularization method for selecting features in regression problems. The approach exhibits unquestionable foundational appeal and versatility, but also poses important challenges. We tackle these challenges, reducing computational burden when tuning the sparsity bound (a parameter which is critical for effectiveness) and improving performance in the presence of feature collinearity and of signals that vary in nature and strength. Importantly, we render the approach efficient and effective in applications of realistic size and complexity - without resorting to relaxations or heuristics in the optimization, or abandoning rigorous cross-validation tuning. Computational viability and improved performance in subtler scenarios is achieved with a multi-pronged blueprint, leveraging characteristics of the Mixed Integer Programming framework and by means of whitening, a data pre-processing step.

Similarity/Distance measures play a key role in many machine learning, pattern recognition, and data mining algorithms, which leads to the emergence of metric learning field. Many metric learning algorithms learn a global distance function from data that satisfy the constraints of the problem. However, in many real-world datasets that the discrimination power of features varies in the different regions of input space, a global metric is often unable to capture the complexity of the task. To address this challenge, local metric learning methods are proposed that learn multiple metrics across the different regions of input space. Some advantages of these methods are high flexibility and the ability to learn a nonlinear mapping but typically achieves at the expense of higher time requirement and overfitting problem. To overcome these challenges, this research presents an online multiple metric learning framework. Each metric in the proposed framework is composed of a global and a local component learned simultaneously. Adding a global component to a local metric efficiently reduce the problem of overfitting. The proposed framework is also scalable with both sample size and the dimension of input data. To the best of our knowledge, this is the first local online similarity/distance learning framework based on PA (Passive/Aggressive). In addition, for scalability with the dimension of input data, DRP (Dual Random Projection) is extended for local online learning in the present work. It enables our methods to be run efficiently on high-dimensional datasets, while maintains their predictive performance. The proposed framework provides a straightforward local extension to any global online similarity/distance learning algorithm based on PA.

Model compression is significant for the wide adoption of Recurrent Neural Networks (RNNs) in both user devices possessing limited resources and business clusters requiring quick responses to large-scale service requests. This work aims to learn structurally-sparse Long Short-Term Memory (LSTM) by reducing the sizes of basic structures within LSTM units, including input updates, gates, hidden states, cell states and outputs. Independently reducing the sizes of basic structures can result in inconsistent dimensions among them, and consequently, end up with invalid LSTM units. To overcome the problem, we propose Intrinsic Sparse Structures (ISS) in LSTMs. Removing a component of ISS will simultaneously decrease the sizes of all basic structures by one and thereby always maintain the dimension consistency. By learning ISS within LSTM units, the obtained LSTMs remain regular while having much smaller basic structures. Based on group Lasso regularization, our method achieves 10.59x speedup without losing any perplexity of a language modeling of Penn TreeBank dataset. It is also successfully evaluated through a compact model with only 2.69M weights for machine Question Answering of SQuAD dataset. Our approach is successfully extended to non- LSTM RNNs, like Recurrent Highway Networks (RHNs). Our source code is publicly available at //github.com/wenwei202/iss-rnns

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司