This paper presents a comparative analysis between the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), two vital artificial intelligence algorithms, focusing on optimizing Elliptic Curve Cryptography (ECC) parameters. These encompass the elliptic curve coefficients, prime number, generator point, group order, and cofactor. The study provides insights into which of the bio-inspired algorithms yields better optimization results for ECC configurations, examining performances under the same fitness function. This function incorporates methods to ensure robust ECC parameters, including assessing for singular or anomalous curves and applying Pollard's rho attack and Hasse's theorem for optimization precision. The optimized parameters generated by GA and PSO are tested in a simulated e-commerce environment, contrasting with well-known curves like secp256k1 during the transmission of order messages using Elliptic Curve-Diffie Hellman (ECDH) and Hash-based Message Authentication Code (HMAC). Focusing on traditional computing in the pre-quantum era, this research highlights the efficacy of GA and PSO in ECC optimization, with implications for enhancing cybersecurity in third-party e-commerce integrations. We recommend the immediate consideration of these findings before quantum computing's widespread adoption.
Current methods based on Neural Radiance Fields (NeRF) significantly lack the capacity to quantify uncertainty in their predictions, particularly on the unseen space including the occluded and outside scene content. This limitation hinders their extensive applications in robotics, where the reliability of model predictions has to be considered for tasks such as robotic exploration and planning in unknown environments. To address this, we propose a novel approach to estimate a 3D Uncertainty Field based on the learned incomplete scene geometry, which explicitly identifies these unseen regions. By considering the accumulated transmittance along each camera ray, our Uncertainty Field infers 2D pixel-wise uncertainty, exhibiting high values for rays directly casting towards occluded or outside the scene content. To quantify the uncertainty on the learned surface, we model a stochastic radiance field. Our experiments demonstrate that our approach is the only one that can explicitly reason about high uncertainty both on 3D unseen regions and its involved 2D rendered pixels, compared with recent methods. Furthermore, we illustrate that our designed uncertainty field is ideally suited for real-world robotics tasks, such as next-best-view selection.
In this paper, for a single-input multiple-output (SIMO) system aided by a passive reconfigurable intelligent surface (RIS), the joint transmission accomplished by the single transmit antenna and the RIS with multiple controllable reflective elements is considered. Relying on a general capacity upper bound derived by a maximum-trace argument, we respectively characterize the capacity of such \rev{a} channel in the low-SNR or the rank-one regimes, in which the optimal configuration of the RIS is proved to be beamforming with carefully-chosen phase shifts. To exploit the potential of modulating extra information on the RIS, based on the QR decomposition, successive interference cancellation, and a strategy named \textit{partially beamforming and partially information-carrying}, we propose a novel transceiver architecture with only a single RF front end at the transmitter, by which the considered channel can be regarded as a concatenation of a vector Gaussian channel and several phase-modulated channels. Especially, we investigate a class of vector Gaussian channels with a hypersphere input support constraint, and not only generalize the existing result to arbitrary-dimensional real spaces but also present its high-order capacity asymptotics, by which both capacities of hypersphere-constrained channels and achievable rates of the proposed transceiver with two different signaling schemes can be well-approximated. Information-theoretic analyses show that the transceiver architecture designed for the SIMO channel has a boosted multiplexing gain, rather than one for the conventionally-used optimized beamforming scheme.Numerical results verify our derived asymptotics and show notable superiority of the proposed transceiver.
In this paper, we present two novel Asymptotic-Preserving Neural Networks (APNNs) for tackling multiscale time-dependent kinetic problems, encompassing the linear transport equation and Bhatnagar-Gross-Krook (BGK) equation with diffusive scaling. Our primary objective is to devise efficient and accurate APNN approaches for resolving multiscale kinetic equations. We have established a neural network based on even-odd decomposition and concluded that enforcing the initial condition for the linear transport equation with inflow boundary conditions is crucial. This APNN method based on even-odd parity relaxes the stringent conservation prerequisites while concurrently introducing an auxiliary deep neural network. Additionally, we have incorporated the conservation laws of mass, momentum, and energy for the Boltzmann-BGK equation into the APNN framework by enforcing exact boundary conditions. This is our second contribution. The most notable finding of this study is that approximating the zeroth, first and second moments of the particle density distribution is simpler than the distribution itself. Furthermore, a compelling phenomenon in the training process is that the convergence of density is swifter than that of momentum and energy. Finally, we investigate several benchmark problems to demonstrate the efficacy of our proposed APNN methods.
Through the advancement in natural language processing (NLP), specifically in speech recognition, fully automated complex systems functioning on voice input have started proliferating in areas such as home automation. These systems have been termed Automatic Speech Recognition Systems (ASR). In this review paper, we explore the feasibility of an end-to-end system providing speech and text based natural language processing for job interview preparation as well as recommendation of relevant job postings. We also explore existing recommender-based systems and note their limitations. This literature review would help us identify the approaches and limitations of the various similar use-cases of NLP technology for our upcoming project.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.
Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.