Influenced mixed moving average fields are a versatile modeling class for spatio-temporal data. However, their predictive distribution is not generally known. Under this modeling assumption, we define a novel spatio-temporal embedding and a theory-guided machine learning approach that employs a generalized Bayesian algorithm to make ensemble forecasts. We use Lipschitz predictors and determine fixed-time and any-time PAC Bayesian bounds in the batch learning setting. Performing causal forecast is a highlight of our methodology as its potential application to data with spatial and temporal short and long-range dependence. We then test the performance of our learning methodology by using linear predictors and data sets simulated from a spatio-temporal Ornstein-Uhlenbeck process.
The Kennedy and O'Hagan (KOH) calibration framework uses coupled Gaussian processes (GPs) to meta-model an expensive simulator (first GP), tune its ``knobs" (calibration inputs) to best match observations from a real physical/field experiment and correct for any modeling bias (second GP) when predicting under new field conditions (design inputs). There are well-established methods for placement of design inputs for data-efficient planning of a simulation campaign in isolation, i.e., without field data: space-filling, or via criterion like minimum integrated mean-squared prediction error (IMSPE). Analogues within the coupled GP KOH framework are mostly absent from the literature. Here we derive a closed form IMSPE criterion for sequentially acquiring new simulator data for KOH. We illustrate how acquisitions space-fill in design space, but concentrate in calibration space. Closed form IMSPE precipitates a closed-form gradient for efficient numerical optimization. We demonstrate that our KOH-IMSPE strategy leads to a more efficient simulation campaign on benchmark problems, and conclude with a showcase on an application to equilibrium concentrations of rare earth elements for a liquid-liquid extraction reaction.
In various scientific fields, researchers are interested in exploring the relationship between some response variable Y and a vector of covariates X. In order to make use of a specific model for the dependence structure, it first has to be checked whether the conditional density function of Y given X fits into a given parametric family. We propose a consistent bootstrap-based goodness-of-fit test for this purpose. The test statistic traces the difference between a nonparametric and a semi-parametric estimate of the marginal distribution function of Y. As its asymptotic null distribution is not distribution-free, a parametric bootstrap method is used to determine the critical value. A simulation study shows that, in some cases, the new method is more sensitive to deviations from the parametric model than other tests found in the literature. We also apply our method to real-world datasets.
Finding vertex-to-vertex correspondences in real-world graphs is a challenging task with applications in a wide variety of domains. Structural matching based on graphs connectivities has attracted considerable attention, while the integration of all the other information stemming from vertices and edges attributes has been mostly left aside. Here we present the Graph Attributes and Structure Matching (GASM) algorithm, which provides high-quality solutions by integrating all the available information in a unified framework. Parameters quantifying the reliability of the attributes can tune how much the solutions should rely on the structure or on the attributes. We further show that even without attributes GASM consistently finds as-good-as or better solutions than state-of-the-art algorithms, with similar processing times.
We study the decidability and complexity of non-cooperative rational synthesis problem (abbreviated as NCRSP) for some classes of probabilistic strategies. We show that NCRSP for stationary strategies and Muller objectives is in 3-EXPTIME, and if we restrict the strategies of environment players to be positional, NCRSP becomes NEXPSPACE solvable. On the other hand, NCRSP_>, which is a variant of NCRSP, is shown to be undecidable even for pure finite-state strategies and terminal reachability objectives. Finally, we show that NCRSP becomes EXPTIME solvable if we restrict the memory of a strategy to be the most recently visited t vertices where t is linear in the size of the game.
We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial ``deflation'' step to the standard generic chaining argument. The resulting tail bound is the sum of the complexity of the ``deflated function class'' in terms of a generalization of Talagrand's $\gamma$ functional, and the deviation of the function instance, both of which are formulated based on the natural seminorm induced by the corresponding Cram\'{e}r functions. Leveraging another less demanding natural seminorm, we also show similar bounds, though with implicit dependence on the sample size, in the more general case where finite exponential moments cannot be assumed. We also provide approximations of the tail bounds in terms of the more prevalent Orlicz norms or their ``incomplete'' versions under suitable moment conditions.
Quantum learning models hold the potential to bring computational advantages over the classical realm. As powerful quantum servers become available on the cloud, ensuring the protection of clients' private data becomes crucial. By incorporating quantum homomorphic encryption schemes, we present a general framework that enables quantum delegated and federated learning with a computation-theoretical data privacy guarantee. We show that learning and inference under this framework feature substantially lower communication complexity compared with schemes based on blind quantum computing. In addition, in the proposed quantum federated learning scenario, there is less computational burden on local quantum devices from the client side, since the server can operate on encrypted quantum data without extracting any information. We further prove that certain quantum speedups in supervised learning carry over to private delegated learning scenarios employing quantum kernel methods. Our results provide a valuable guide toward privacy-guaranteed quantum learning on the cloud, which may benefit future studies and security-related applications.
Accurate modeling is essential in integer-valued real phenomena, including the distribution of entire data, zero-inflated (ZI) data, and discrete exceedances. The Poisson and Negative Binomial distributions, along with their ZI variants, are considered suitable for modeling the entire data distribution, but they fail to capture the heavy tail behavior effectively alongside the bulk of the distribution. In contrast, the discrete generalized Pareto distribution (DGPD) is preferred for high threshold exceedances, but it becomes less effective for low threshold exceedances. However, in some applications, the selection of a suitable high threshold is challenging, and the asymptotic conditions required for using DGPD are not always met. To address these limitations, extended versions of DGPD are proposed. These extensions are designed to model one of three scenarios: first, the entire distribution of the data, including both bulk and tail and bypassing the threshold selection step; second, the entire distribution along with ZI; and third, the tail of the distribution for low threshold exceedances. The proposed extensions offer improved estimates across all three scenarios compared to existing models, providing more accurate and reliable results in simulation studies and real data applications.
In this work, we develop Crank-Nicolson-type iterative decoupled algorithms for a three-field formulation of Biot's consolidation model using total pressure. We begin by constructing an equivalent fully implicit coupled algorithm using the standard Crank-Nicolson method for the three-field formulation of Biot's model. Employing an iterative decoupled scheme to decompose the resulting coupled system, we derive two distinctive forms of Crank-Nicolson-type iterative decoupled algorithms based on the order of temporal computation and iteration: a time-stepping iterative decoupled algorithm and a global-in-time iterative decoupled algorithm. Notably, the proposed global-in-time algorithm supports a partially parallel-in-time feature. Capitalizing on the convergence properties of the iterative decoupled scheme, both algorithms exhibit second-order time accuracy and unconditional stability. Through numerical experiments, we validate theoretical predictions and demonstrate the effectiveness and efficiency of these novel approaches.
Given a finite set of matrices with integer entries, the matrix mortality problem asks if there exists a product of these matrices equal to the zero matrix. We consider a special case of this problem where all entries of the matrices are nonnegative. This case is equivalent to the NFA mortality problem, which, given an NFA, asks for a word $w$ such that the image of every state under $w$ is the empty set. The size of the alphabet of the NFA is then equal to the number of matrices in the set. We study the length of shortest such words depending on the size of the alphabet. We show that for an NFA with $n$ states this length can be at least $2^n - 1$ for an alphabet of size $n$, $2^{(n - 4)/2}$ for an alphabet of size $3$ and $2^{(n - 2)/3}$ for an alphabet of size $2$. We also discuss further open problems related to mortality of NFAs and DFAs.
Fourth-order variational inequalities are encountered in various scientific and engineering disciplines, including elliptic optimal control problems and plate obstacle problems. In this paper, we consider additive Schwarz methods for solving fourth-order variational inequalities. Based on a unified framework of various finite element methods for fourth-order variational inequalities, we develop one- and two-level additive Schwarz methods. We prove that the two-level method is scalable in the sense that the convergence rate of the method depends on $H/h$ and $H/\delta$ only, where $h$ and $H$ are the typical diameters of an element and a subdomain, respectively, and $\delta$ measures the overlap among the subdomains. This proof relies on a new nonlinear positivity-preserving coarse interpolation operator, the construction of which was previously unknown. To the best of our knowledge, this analysis represents the first investigation into the scalability of the two-level additive Schwarz method for fourth-order variational inequalities. Our theoretical results are verified by numerical experiments.