Social platforms have emerged as crucial platforms for disseminating information and discussing real-life social events, which offers an excellent opportunity for researchers to design and implement novel event detection frameworks. However, most existing approaches merely exploit keyword burstiness or network structures to detect unspecified events. Thus, they often fail to identify unspecified events regarding the challenging nature of events and social data. Social data, e.g., tweets, is characterized by misspellings, incompleteness, word sense ambiguation, and irregular language, as well as variation in aspects of opinions. Moreover, extracting discriminative features and patterns for evolving events by exploiting the limited structural knowledge is almost infeasible. To address these challenges, in this thesis, we propose a novel framework, namely EnrichEvent, that leverages the lexical and contextual representations of streaming social data. In particular, we leverage contextual knowledge, as well as lexical knowledge, to detect semantically related tweets and enhance the effectiveness of the event detection approaches. Eventually, our proposed framework produces cluster chains for each event to show the evolving variation of the event through time. We conducted extensive experiments to evaluate our framework, validating its high performance and effectiveness in detecting and distinguishing unspecified social events.
Increasing the context length of large language models (LLMs) unlocks fundamentally new capabilities, but also significantly increases the memory footprints of training. Previous model-parallel systems such as Megatron-LM partition and compute different attention heads in parallel, resulting in large communication volumes, so they cannot scale beyond the number of attention heads, thereby hindering its adoption. In this paper, we introduce a new approach, LightSeq, for long-context LLMs training. LightSeq has many notable advantages. First, LightSeq partitions over the sequence dimension, hence is agnostic to model architectures and readily applicable for models with varying numbers of attention heads, such as Multi-Head, Multi-Query and Grouped-Query attention. Second, LightSeq not only requires up to 4.7x less communication than Megatron-LM on popular LLMs but also overlaps the communication with computation. To further reduce the training time, LightSeq features a novel gradient checkpointing scheme to bypass an forward computation for memory-efficient attention. We evaluate LightSeq on Llama-7B and its variants with sequence lengths from 32K to 512K. Through comprehensive experiments on single and cross-node training, we show that LightSeq achieves up to 1.24-2.01x end-to-end speedup, and a 2-8x longer sequence length on models with fewer heads, compared to Megatron-LM. Codes will be available at //github.com/RulinShao/LightSeq.
Most large language models (LLMs) are trained once and never updated; thus, they lack the ability to dynamically adapt to our ever-changing world. In this work, we perform a detailed study of the factuality of LLM-generated text in the context of answering questions that test current world knowledge. Specifically, we introduce FreshQA, a novel dynamic QA benchmark encompassing a diverse range of question and answer types, including questions that require fast-changing world knowledge as well as questions with false premises that need to be debunked. We benchmark a diverse array of both closed and open-source LLMs under a two-mode evaluation procedure that allows us to measure both correctness and hallucination. Through human evaluations involving more than 50K judgments, we shed light on limitations of these models and demonstrate significant room for improvement: for instance, all models (regardless of model size) struggle on questions that involve fast-changing knowledge and false premises. Motivated by these results, we present FreshPrompt, a simple few-shot prompting method that substantially boosts the performance of an LLM on FreshQA by incorporating relevant and up-to-date information retrieved from a search engine into the prompt. Our experiments show that FreshPrompt outperforms both competing search engine-augmented prompting methods such as Self-Ask (Press et al., 2022) as well as commercial systems such as Perplexity.AI. Further analysis of FreshPrompt reveals that both the number of retrieved evidences and their order play a key role in influencing the correctness of LLM-generated answers. Additionally, instructing the LLM to generate concise and direct answers helps reduce hallucination compared to encouraging more verbose answers. To facilitate future work, we release FreshQA at github.com/freshllms/freshqa and commit to updating it at regular intervals.
Mixture-of-experts based models, which use language experts to extract language-specific representations effectively, have been well applied in code-switching automatic speech recognition. However, there is still substantial space to improve as similar pronunciation across languages may result in ineffective multi-language modeling and inaccurate language boundary estimation. To eliminate these drawbacks, we propose a cross-layer language adapter and a boundary-aware training method, namely Boundary-Aware Mixture-of-Experts (BA-MoE). Specifically, we introduce language-specific adapters to separate language-specific representations and a unified gating layer to fuse representations within each encoder layer. Second, we compute language adaptation loss of the mean output of each language-specific adapter to improve the adapter module's language-specific representation learning. Besides, we utilize a boundary-aware predictor to learn boundary representations for dealing with language boundary confusion. Our approach achieves significant performance improvement, reducing the mixture error rate by 16.55\% compared to the baseline on the ASRU 2019 Mandarin-English code-switching challenge dataset.
Large language models (LLMs), known for their capability in understanding and following instructions, are vulnerable to adversarial attacks. Researchers have found that current commercial LLMs either fail to be "harmless" by presenting unethical answers, or fail to be "helpful" by refusing to offer meaningful answers when faced with adversarial queries. To strike a balance between being helpful and harmless, we design a moving target defense (MTD) enhanced LLM system. The system aims to deliver non-toxic answers that align with outputs from multiple model candidates, making them more robust against adversarial attacks. We design a query and output analysis model to filter out unsafe or non-responsive answers. %to achieve the two objectives of randomly selecting outputs from different LLMs. We evaluate over 8 most recent chatbot models with state-of-the-art adversarial queries. Our MTD-enhanced LLM system reduces the attack success rate from 37.5\% to 0\%. Meanwhile, it decreases the response refusal rate from 50\% to 0\%.
Reasoning about time is essential for understanding the nuances of events described in natural language. Previous research on this topic has been limited in scope, characterized by a lack of standardized benchmarks that would allow for consistent evaluations across different studies. In this paper, we introduce TRAM, a temporal reasoning benchmark composed of ten datasets, encompassing various temporal aspects of events such as order, arithmetic, frequency, and duration, designed to facilitate a comprehensive evaluation of the temporal reasoning capabilities of large language models (LLMs). We conduct an extensive evaluation using popular LLMs, such as GPT-4 and Llama2, in both zero-shot and few-shot learning scenarios. Additionally, we employ BERT-based models to establish the baseline evaluations. Our findings indicate that these models still trail human performance in temporal reasoning tasks. It is our aspiration that TRAM will spur further progress in enhancing the temporal reasoning abilities of LLMs.
Modern computer systems are highly configurable, with hundreds of configuration options that interact, resulting in an enormous configuration space. As a result, optimizing performance goals (e.g., latency) in such systems is challenging due to frequent uncertainties in their environments (e.g., workload fluctuations). Recently, transfer learning has been applied to address this problem by reusing knowledge from configuration measurements from the source environments, where it is cheaper to intervene than the target environment, where any intervention is costly or impossible. Recent empirical research showed that statistical models can perform poorly when the deployment environment changes because the behavior of certain variables in the models can change dramatically from source to target. To address this issue, we propose CAMEO, a method that identifies invariant causal predictors under environmental changes, allowing the optimization process to operate in a reduced search space, leading to faster optimization of system performance. We demonstrate significant performance improvements over state-of-the-art optimization methods in MLperf deep learning systems, a video analytics pipeline, and a database system.
The transformer architecture has made breakthroughs in recent years on tasks which require modeling pairwise relationships between sequential elements, as is the case in natural language understanding. However, transformers struggle with long sequences due to the quadratic complexity of the attention operation, and previous research has aimed to lower the complexity by sparsifying or linearly approximating the attention matrix. Yet, these approaches cannot straightforwardly distill knowledge from a teacher's attention matrix, and often require complete retraining from scratch. Furthermore, previous sparse and linear approaches may also lose interpretability if they do not produce full quadratic attention matrices. To address these challenges, we propose SEA: Sparse linear attention with an Estimated Attention mask. SEA estimates the attention matrix with linear complexity via kernel-based linear attention, then creates a sparse approximation to the full attention matrix with a top-k selection to perform a sparse attention operation. For language modeling tasks (Wikitext2), previous linear and sparse attention methods show a roughly two-fold worse perplexity scores over the quadratic OPT-125M baseline, while SEA achieves an even better perplexity than OPT-125M, using roughly half as much memory as OPT-125M. Moreover, SEA maintains an interpretable attention matrix and can utilize knowledge distillation to lower the complexity of existing pretrained transformers. We believe that our work will have a large practical impact, as it opens the possibility of running large transformers on resource-limited devices with less memory.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (\aka~embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and \etc.~from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.