Contrastive cross-modality pretraining has recently exhibited impressive success in diverse fields, whereas there is limited research on their merits in speech emotion recognition (SER). In this paper, we propose GEmo-CLAP, a kind of gender-attribute-enhanced contrastive language-audio pretraining (CLAP) method for SER. Specifically, we first construct an effective emotion CLAP (Emo-CLAP) for SER, using pre-trained text and audio encoders. Second, given the significance of gender information in SER, two novel multi-task learning based GEmo-CLAP (ML-GEmo-CLAP) and soft label based GEmo-CLAP (SL-GEmo-CLAP) models are further proposed to incorporate gender information of speech signals, forming more reasonable objectives. Experiments on IEMOCAP indicate that our proposed two GEmo-CLAPs consistently outperform Emo-CLAP with different pre-trained models. Remarkably, the proposed WavLM-based SL-GEmo-CLAP obtains the best UAR of 81.43% and WAR of 83.16%, which performs better than state-of-the-art SER methods by at least 3%. Our system is open-sourced on Github.
Generally, Deep Neural Networks (DNNs) are expected to have high performance when their model size is large. However, large models failed to produce high-quality results commensurate with their scale in music Super-Resolution (SR). We attribute this to that DNNs cannot learn information commensurate with their size from standard mean square error losses. To unleash the potential of large DNN models in music SR, we propose BigWavGAN, which incorporates Demucs, a large-scale wave-to-wave model, with State-Of-The-Art (SOTA) discriminators and adversarial training strategies. Our discriminator consists of Multi-Scale Discriminator (MSD) and Multi-Resolution Discriminator (MRD). During inference, since only the generator is utilized, there are no additional parameters or computational resources required compared to the baseline model Demucs. Objective evaluation affirms the effectiveness of BigWavGAN in music SR. Subjective evaluations indicate that BigWavGAN can generate music with significantly high perceptual quality over the baseline model. Notably, BigWavGAN surpasses the SOTA music SR model in both simulated and real-world scenarios. Moreover, BigWavGAN represents its superior generalization ability to address out-of-distribution data. The conducted ablation study reveals the importance of our discriminators and training strategies. Samples are available on the demo page.
Although the number of gaze estimation datasets is growing, the application of appearance-based gaze estimation methods is mostly limited to estimating the point of gaze on a screen. This is in part because most datasets are generated in a similar fashion, where the gaze target is on a screen close to camera's origin. In other applications such as assistive robotics or marketing research, the 3D point of gaze might not be close to the camera's origin, meaning models trained on current datasets do not generalize well to these tasks. We therefore suggest generating a textured tridimensional mesh of the face and rendering the training images from a virtual camera at a specific position and orientation related to the application as a mean of augmenting the existing datasets. In our tests, this lead to an average 47% decrease in gaze estimation angular error.
Opinion summarization sets itself apart from other types of summarization tasks due to its distinctive focus on aspects and sentiments. Although certain automated evaluation methods like ROUGE have gained popularity, we have found them to be unreliable measures for assessing the quality of opinion summaries. In this paper, we present OpinSummEval, a dataset comprising human judgments and outputs from 14 opinion summarization models. We further explore the correlation between 24 automatic metrics and human ratings across four dimensions. Our findings indicate that metrics based on neural networks generally outperform non-neural ones. However, even metrics built on powerful backbones, such as BART and GPT-3/3.5, do not consistently correlate well across all dimensions, highlighting the need for advancements in automated evaluation methods for opinion summarization. The code and data are publicly available at //github.com/A-Chicharito-S/OpinSummEval/tree/main.
Although action recognition for procedural tasks has received notable attention, it has a fundamental flaw in that no measure of success for actions is provided. This limits the applicability of such systems especially within the industrial domain, since the outcome of procedural actions is often significantly more important than the mere execution. To address this limitation, we define the novel task of procedure step recognition (PSR), focusing on recognizing the correct completion and order of procedural steps. Alongside the new task, we also present the multi-modal IndustReal dataset. Unlike currently available datasets, IndustReal contains procedural errors (such as omissions) as well as execution errors. A significant part of these errors are exclusively present in the validation and test sets, making IndustReal suitable to evaluate robustness of algorithms to new, unseen mistakes. Additionally, to encourage reproducibility and allow for scalable approaches trained on synthetic data, the 3D models of all parts are publicly available. Annotations and benchmark performance are provided for action recognition and assembly state detection, as well as the new PSR task. IndustReal, along with the code and model weights, is available at: //github.com/TimSchoonbeek/IndustReal .
Maximum likelihood estimation (MLE) is a statistical method used to estimate the parameters of a probability distribution that best explain the observed data. In the context of text generation, MLE is often used to train generative language models, which can then be used to generate new text. However, we argue that MLE is not always necessary and optimal, especially for closed-ended text generation tasks like machine translation. In these tasks, the goal of model is to generate the most appropriate response, which does not necessarily require it to estimate the entire data distribution with MLE. To this end, we propose a novel class of training objectives based on convex functions, which enables text generation models to focus on highly probable outputs without having to estimate the entire data distribution. We investigate the theoretical properties of the optimal predicted distribution when applying convex functions to the loss, demonstrating that convex functions can sharpen the optimal distribution, thereby enabling the model to better capture outputs with high probabilities. Experiments on various text generation tasks and models show the effectiveness of our approach. It enables autoregressive models to bridge the gap between greedy and beam search, and facilitates the learning of non-autoregressive models with a maximum improvement of 9+ BLEU points. Moreover, our approach also exhibits significant impact on large language models (LLMs), substantially enhancing their generative capability on various tasks. Source code is available at \url{//github.com/ictnlp/Convex-Learning}.
Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.