亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Errors are common in time series due to unreliable sensor measurements. Existing methods focus on univariate data but do not utilize the correlation between dimensions. Cleaning each dimension separately may lead to a less accurate result, as some errors can only be identified in the multivariate case. We also point out that the widely used minimum change principle is not always the best choice. Instead, we try to change the smallest number of data to avoid a significant change in the data distribution. In this paper, we propose MTCSC, the constraint-based method for cleaning multivariate time series. We formalize the repair problem, propose a linear-time method to employ online computing, and improve it by exploiting data trends. We also support adaptive speed constraint capturing. We analyze the properties of our proposals and compare them with SOTA methods in terms of effectiveness, efficiency versus error rates, data sizes, and applications such as classification. Experiments on real datasets show that MTCSC can have higher repair accuracy with less time consumption. Interestingly, it can be effective even when there are only weak or no correlations between the dimensions.

相關內容

Recent advances in GPU-based parallel simulation have enabled practitioners to collect large amounts of data and train complex control policies using deep reinforcement learning (RL), on commodity GPUs. However, such successes for RL in robotics have been limited to tasks sufficiently simulated by fast rigid-body dynamics. Simulation techniques for soft bodies are comparatively several orders of magnitude slower, thereby limiting the use of RL due to sample complexity requirements. To address this challenge, this paper presents both a novel RL algorithm and a simulation platform to enable scaling RL on tasks involving rigid bodies and deformables. We introduce Soft Analytic Policy Optimization (SAPO), a maximum entropy first-order model-based actor-critic RL algorithm, which uses first-order analytic gradients from differentiable simulation to train a stochastic actor to maximize expected return and entropy. Alongside our approach, we develop Rewarped, a parallel differentiable multiphysics simulation platform that supports simulating various materials beyond rigid bodies. We re-implement challenging manipulation and locomotion tasks in Rewarped, and show that SAPO outperforms baselines over a range of tasks that involve interaction between rigid bodies, articulations, and deformables.

A new online multiple testing procedure is described in the context of anomaly detection, which controls the False Discovery Rate (FDR). An accurate anomaly detector must control the false positive rate at a prescribed level while keeping the false negative rate as low as possible. However in the online context, such a constraint remains highly challenging due to the usual lack of FDR control: the online framework makes it impossible to use classical multiple testing approaches such as the Benjamini-Hochberg (BH) procedure, which would require knowing the entire time series. The developed strategy relies on exploiting the local control of the ``modified FDR'' (mFDR) criterion. It turns out that the local control of mFDR enables global control of the FDR over the full series up to additional modifications of the multiple testing procedures. An important ingredient in this control is the cardinality of the calibration dataset used to compute the empirical p-values. A dedicated strategy for tuning this parameter is designed for achieving the prescribed FDR control over the entire time series. The good statistical performance of the full strategy is analyzed by theoretical guarantees. Its practical behavior is assessed by several simulation experiments which support our conclusions.

Information Retrieval (IR) methods aim to identify documents relevant to a query, which have been widely applied in various natural language tasks. However, existing approaches typically consider only the textual content within documents, overlooking the fact that documents can contain multiple modalities, including images and tables. Also, they often segment each long document into multiple discrete passages for embedding, which prevents them from capturing the overall document context and interactions between paragraphs. To address these two challenges, we propose a method that holistically embeds documents interleaved with multiple modalities by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse IR scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information within documents.

We propose a multiscale approach to time series autoregression, in which linear regressors for the process in question include features of its own path that live on multiple timescales. We take these multiscale features to be the recent averages of the process over multiple timescales, whose number or spans are not known to the analyst and are estimated from the data via a change-point detection technique. The resulting construction, termed Adaptive Multiscale AutoRegression (AMAR) enables adaptive regularisation of linear autoregression of large orders. The AMAR model is designed to offer simplicity and interpretability on the one hand, and modelling flexibility on the other. Our theory permits the longest timescale to increase with the sample size. A simulation study is presented to show the usefulness of our approach. Some possible extensions are also discussed, including the Adaptive Multiscale Vector AutoRegressive model (AMVAR) for multivariate time series, which demonstrates promising performance in the data example on UK and US unemployment rates. The R package amar provides an efficient implementation of the AMAR framework.

Graph Neural Networks (GNNs) are currently one of the most powerful types of neural network architectures. Their advantage lies in the ability to leverage both the graph topology, which represents the relationships between samples, and the features of the samples themselves. However, the given graph topology often contains noisy edges, and GNNs are vulnerable to noise in the graph structure. This issue remains unresolved. In this paper, we propose using adversarial robustness evaluation to select a small subset of robust nodes that are less affected by noise. We then only feed the features of these robust nodes, along with the KNN graph constructed from these nodes, into the GNN for classification. Additionally, we compute the centroids for each class. For the remaining non-robust nodes, we assign them to the class whose centroid is closest to them. Experimental results show that this method significantly improves the accuracy of GNNs.

A challenge in high-dimensional inverse problems is developing iterative solvers to find the accurate solution of regularized optimization problems with low computational cost. An important example is computed tomography (CT) where both image and data sizes are large and therefore the forward model is costly to evaluate. Since several years algorithms from stochastic optimization are used for tomographic image reconstruction with great success by subsampling the data. Here we propose a novel way how stochastic optimization can be used to speed up image reconstruction by means of image domain sketching such that at each iteration an image of different resolution is being used. Hence, we coin this algorithm ImaSk. By considering an associated saddle-point problem, we can formulate ImaSk as a gradient-based algorithm where the gradient is approximated in the same spirit as the stochastic average gradient am\'elior\'e (SAGA) and uses at each iteration one of these multiresolution operators at random. We prove that ImaSk is linearly converging for linear forward models with strongly convex regularization functions. Numerical simulations on CT show that ImaSk is effective and increasing the number of multiresolution operators reduces the computational time to reach the modeled solution.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

北京阿比特科技有限公司