Masked AutoEncoder (MAE) has revolutionized the field of self-supervised learning with its simple yet effective masking and reconstruction strategies. However, despite achieving state-of-the-art performance across various downstream vision tasks, the underlying mechanisms that drive MAE's efficacy are less well-explored compared to the canonical contrastive learning paradigm. In this paper, we first propose a local perspective to explicitly extract a local contrastive form from MAE's reconstructive objective at the patch level. And then we introduce a new empirical framework, called Local Contrastive MAE (LC-MAE), to analyze both reconstructive and contrastive aspects of MAE. LC-MAE reveals that MAE learns invariance to random masking and ensures distribution consistency between the learned token embeddings and the original images. Furthermore, we dissect the contribution of the decoder and random masking to MAE's success, revealing both the decoder's learning mechanism and the dual role of random masking as data augmentation and effective receptive field restriction. Our experimental analysis sheds light on the intricacies of MAE and summarizes some useful design methodologies, which can inspire more powerful visual self-supervised methods.
We consider the task of learning individual-specific intensities of counting processes from a set of static variables and irregularly sampled time series. We introduce a novel modelization approach in which the intensity is the solution to a controlled differential equation. We first design a neural estimator by building on neural controlled differential equations. In a second time, we show that our model can be linearized in the signature space under sufficient regularity conditions, yielding a signature-based estimator which we call CoxSig. We provide theoretical learning guarantees for both estimators, before showcasing the performance of our models on a vast array of simulated and real-world datasets from finance, predictive maintenance and food supply chain management.
The loss function plays an important role in optimizing the performance of a learning system. A crucial aspect of the loss function is the assignment of sample weights within a mini-batch during loss computation. In the context of continual learning (CL), most existing strategies uniformly treat samples when calculating the loss value, thereby assigning equal weights to each sample. While this approach can be effective in certain standard benchmarks, its optimal effectiveness, particularly in more complex scenarios, remains underexplored. This is particularly pertinent in training "in the wild," such as with self-training, where labeling is automated using a reference model. This paper introduces the Online Meta-learning for Sample Importance (OMSI) strategy that approximates sample weights for a mini-batch in an online CL stream using an inner- and meta-update mechanism. This is done by first estimating sample weight parameters for each sample in the mini-batch, then, updating the model with the adapted sample weights. We evaluate OMSI in two distinct experimental settings. First, we show that OMSI enhances both learning and retained accuracy in a controlled noisy-labeled data stream. Then, we test the strategy in three standard benchmarks and compare it with other popular replay-based strategies. This research aims to foster the ongoing exploration in the area of self-adaptive CL.
Although continuous advances in theoretical modelling of Molecular Communications (MC) are observed, there is still an insuperable gap between theory and experimental testbeds, especially at the microscale. In this paper, the development of the first testbed incorporating engineered yeast cells is reported. Different from the existing literature, eukaryotic yeast cells are considered for both the sender and the receiver, with {\alpha}-factor molecules facilitating the information transfer. The use of such cells is motivated mainly by the well understood biological mechanism of yeast mating, together with their genetic amenability. In addition, recent advances in yeast biosensing establish yeast as a suitable detector and a neat interface to in-body sensor networks. The system under consideration is presented first, and the mathematical models of the underlying biological processes leading to an end-to-end (E2E) system are given. The experimental setup is then described and used to obtain experimental results which validate the developed mathematical models. Beyond that, the ability of the system to effectively generate output pulses in response to repeated stimuli is demonstrated, reporting one event per two hours. However, fast RNA fluctuations indicate cell responses in less than three minutes, demonstrating the potential for much higher rates in the future.
The success of artificial intelligence (AI), and deep learning models in particular, has led to their widespread adoption across various industries due to their ability to process huge amounts of data and learn complex patterns. However, due to their lack of explainability, there are significant concerns regarding their use in critical sectors, such as finance and healthcare, where decision-making transparency is of paramount importance. In this paper, we provide a comparative survey of methods that aim to improve the explainability of deep learning models within the context of finance. We categorize the collection of explainable AI methods according to their corresponding characteristics, and we review the concerns and challenges of adopting explainable AI methods, together with future directions we deemed appropriate and important.
Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.
Graph Convolutional Network (GCN) has achieved extraordinary success in learning effective task-specific representations of nodes in graphs. However, regarding Heterogeneous Information Network (HIN), existing HIN-oriented GCN methods still suffer from two deficiencies: (1) they cannot flexibly explore all possible meta-paths and extract the most useful ones for a target object, which hinders both effectiveness and interpretability; (2) they often need to generate intermediate meta-path based dense graphs, which leads to high computational complexity. To address the above issues, we propose an interpretable and efficient Heterogeneous Graph Convolutional Network (ie-HGCN) to learn the representations of objects in HINs. It is designed as a hierarchical aggregation architecture, i.e., object-level aggregation first, followed by type-level aggregation. The novel architecture can automatically extract useful meta-paths for each object from all possible meta-paths (within a length limit), which brings good model interpretability. It can also reduce the computational cost by avoiding intermediate HIN transformation and neighborhood attention. We provide theoretical analysis about the proposed ie-HGCN in terms of evaluating the usefulness of all possible meta-paths, its connection to the spectral graph convolution on HINs, and its quasi-linear time complexity. Extensive experiments on three real network datasets demonstrate the superiority of ie-HGCN over the state-of-the-art methods.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.
Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.