亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The literature on "benign overfitting" in overparameterized models has been mostly restricted to regression or binary classification; however, modern machine learning operates in the multiclass setting. Motivated by this discrepancy, we study benign overfitting in multiclass linear classification. Specifically, we consider the following training algorithms on separable data: (i) empirical risk minimization (ERM) with cross-entropy loss, which converges to the multiclass support vector machine (SVM) solution; (ii) ERM with least-squares loss, which converges to the min-norm interpolating (MNI) solution; and, (iii) the one-vs-all SVM classifier. First, we provide a simple sufficient deterministic condition under which all three algorithms lead to classifiers that interpolate the training data and have equal accuracy. When the data is generated from Gaussian mixtures or a multinomial logistic model, this condition holds under high enough effective overparameterization. We also show that this sufficient condition is satisfied under "neural collapse", a phenomenon that is observed in training deep neural networks. Second, we derive novel bounds on the accuracy of the MNI classifier, thereby showing that all three training algorithms lead to benign overfitting under sufficient overparameterization. Ultimately, our analysis shows that good generalization is possible for SVM solutions beyond the realm in which typical margin-based bounds apply.

相關內容

在(zai)機(ji)器(qi)學(xue)(xue)習中,支(zhi)持向量機(ji)(SVM,也稱為(wei)(wei)支(zhi)持向量網絡)是(shi)帶(dai)有(you)相關(guan)學(xue)(xue)習算法(fa)的(de)(de)監督學(xue)(xue)習模型(xing),該(gai)算法(fa)分(fen)(fen)(fen)析用于分(fen)(fen)(fen)類(lei)(lei)和(he)回歸(gui)分(fen)(fen)(fen)析的(de)(de)數據。支(zhi)持向量機(ji)(SVM)算法(fa)是(shi)一(yi)種流(liu)行(xing)的(de)(de)機(ji)器(qi)學(xue)(xue)習工具,可為(wei)(wei)分(fen)(fen)(fen)類(lei)(lei)和(he)回歸(gui)問題提供解決方(fang)案。給定一(yi)組訓練示(shi)例(li),每個訓練示(shi)例(li)都標記為(wei)(wei)屬于兩個類(lei)(lei)別(bie)中的(de)(de)一(yi)個或另一(yi)個,則(ze)SVM訓練算法(fa)會構建一(yi)個模型(xing),該(gai)模型(xing)將(jiang)新(xin)示(shi)例(li)分(fen)(fen)(fen)配給一(yi)個類(lei)(lei)別(bie)或另一(yi)個類(lei)(lei)別(bie),使(shi)其成(cheng)為(wei)(wei)非概率二進制線性分(fen)(fen)(fen)類(lei)(lei)器(qi)(盡(jin)(jin)管方(fang)法(fa)存在(zai)諸如Platt縮(suo)放的(de)(de)問題,以(yi)便在(zai)概率分(fen)(fen)(fen)類(lei)(lei)設(she)置中使(shi)用SVM)。SVM模型(xing)是(shi)將(jiang)示(shi)例(li)表示(shi)為(wei)(wei)空(kong)間中的(de)(de)點(dian),并進行(xing)了映射,以(yi)使(shi)各個類(lei)(lei)別(bie)的(de)(de)示(shi)例(li)被盡(jin)(jin)可能寬的(de)(de)明顯間隙分(fen)(fen)(fen)開(kai)。然后,將(jiang)新(xin)示(shi)例(li)映射到相同的(de)(de)空(kong)間,并根據它(ta)們(men)落入的(de)(de)間隙的(de)(de)側面(mian)來(lai)預(yu)測屬于一(yi)個類(lei)(lei)別(bie)。

知識薈萃

精(jing)品(pin)入(ru)門(men)和進階(jie)教(jiao)程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊(xun)等

The vulnerabilities to backdoor attacks have recently threatened the trustworthiness of machine learning models in practical applications. Conventional wisdom suggests that not everyone can be an attacker since the process of designing the trigger generation algorithm often involves significant effort and extensive experimentation to ensure the attack's stealthiness and effectiveness. Alternatively, this paper shows that there exists a more severe backdoor threat: anyone can exploit an easily-accessible algorithm for silent backdoor attacks. Specifically, this attacker can employ the widely-used lossy image compression from a plethora of compression tools to effortlessly inject a trigger pattern into an image without leaving any noticeable trace; i.e., the generated triggers are natural artifacts. One does not require extensive knowledge to click on the "convert" or "save as" button while using tools for lossy image compression. Via this attack, the adversary does not need to design a trigger generator as seen in prior works and only requires poisoning the data. Empirically, the proposed attack consistently achieves 100% attack success rate in several benchmark datasets such as MNIST, CIFAR-10, GTSRB and CelebA. More significantly, the proposed attack can still achieve almost 100% attack success rate with very small (approximately 10%) poisoning rates in the clean label setting. The generated trigger of the proposed attack using one lossy compression algorithm is also transferable across other related compression algorithms, exacerbating the severity of this backdoor threat. This work takes another crucial step toward understanding the extensive risks of backdoor attacks in practice, urging practitioners to investigate similar attacks and relevant backdoor mitigation methods.

Reuse of data in new contexts beyond the purposes for which it was originally collected has contributed to technological innovation and reducing the consent burden on data subjects. One of the legal mechanisms that makes such reuse possible is purpose compatibility assessment. In this paper, I offer an in-depth analysis of this mechanism through a computational lens. I moreover consider what should qualify as repurposing apart from using data for a completely new task, and argue that typical purpose formulations are an impediment to meaningful repurposing. Overall, the paper positions compatibility assessment as a constructive practice beyond an ineffective standard.

Deep Learning (DL) frameworks are now widely used, simplifying the creation of complex models as well as their integration to various applications even to non DL experts. However, like any other programs, they are prone to bugs. This paper deals with the subcategory of bugs named silent bugs: they lead to wrong behavior but they do not cause system crashes or hangs, nor show an error message to the user. Such bugs are even more dangerous in DL applications and frameworks due to the "black-box" and stochastic nature of the systems (the end user can not understand how the model makes decisions). This paper presents the first empirical study of Keras and TensorFlow silent bugs, and their impact on users' programs. We extracted closed issues related to Keras from the TensorFlow GitHub repository. Out of the 1,168 issues that we gathered, 77 were reproducible silent bugs affecting users' programs. We categorized the bugs based on the effects on the users' programs and the components where the issues occurred, using information from the issue reports. We then derived a threat level for each of the issues, based on the impact they had on the users' programs. To assess the relevance of identified categories and the impact scale, we conducted an online survey with 103 DL developers. The participants generally agreed with the significant impact of silent bugs in DL libraries and acknowledged our findings (i.e., categories of silent bugs and the proposed impact scale). Finally, leveraging our analysis, we provide a set of guidelines to facilitate safeguarding against such bugs in DL frameworks.

Traditional model-based diagnosis relies on constructing explicit system models, a process that can be laborious and expertise-demanding. In this paper, we propose a novel framework that combines concepts of model-based diagnosis with deep graph structure learning. This data-driven approach leverages data to learn the system's underlying structure and provide dynamic observations, represented by two distinct graph adjacency matrices. Our work facilitates a seamless integration of graph structure learning with model-based diagnosis by making three main contributions: (i) redefining the constructs of system representation, observations, and faults (ii) introducing two distinct versions of a self-supervised graph structure learning model architecture and (iii) demonstrating the potential of our data-driven diagnostic method through experiments on a system of coupled oscillators.

Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.

Explainable recommendation attempts to develop models that generate not only high-quality recommendations but also intuitive explanations. The explanations may either be post-hoc or directly come from an explainable model (also called interpretable or transparent model in some context). Explainable recommendation tries to address the problem of why: by providing explanations to users or system designers, it helps humans to understand why certain items are recommended by the algorithm, where the human can either be users or system designers. Explainable recommendation helps to improve the transparency, persuasiveness, effectiveness, trustworthiness, and satisfaction of recommendation systems. In this survey, we review works on explainable recommendation in or before the year of 2019. We first highlight the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation on three perspectives: 1) We provide a chronological research timeline of explainable recommendation, including user study approaches in the early years and more recent model-based approaches. 2) We provide a two-dimensional taxonomy to classify existing explainable recommendation research: one dimension is the information source (or display style) of the explanations, and the other dimension is the algorithmic mechanism to generate explainable recommendations. 3) We summarize how explainable recommendation applies to different recommendation tasks, such as product recommendation, social recommendation, and POI recommendation. We also devote a section to discuss the explanation perspectives in broader IR and AI/ML research. We end the survey by discussing potential future directions to promote the explainable recommendation research area and beyond.

北京阿比特科技有限公司