We consider goal-oriented adaptive space-time finite-element discretizations of the regularized parabolic p-Laplace problem on completely unstructured simplicial space-time meshes. The adaptivity is driven by the dual-weighted residual (DWR) method since we are interested in an accurate computation of some possibly nonlinear functionals at the solution. Such functionals represent goals in which engineers are often more interested than the solution itself. The DWR method requires the numerical solution of a linear adjoint problem that provides the sensitivities for the mesh refinement. This can be done by means of the same full space-time finite element discretization as used for the primal non-linear problems. The numerical experiments presented demonstrate that this goal-oriented, full space-time finite element solver efficiently provides accurate numerical results for different functionals.
This paper investigates the multiple-input-multiple-output (MIMO) massive unsourced random access in an asynchronous orthogonal frequency division multiplexing (OFDM) system, with both timing and frequency offsets (TFO) and non-negligible user collisions. The proposed coding framework splits the data into two parts encoded by sparse regression code (SPARC) and low-density parity check (LDPC) code. Multistage orthogonal pilots are transmitted in the first part to reduce collision density. Unlike existing schemes requiring a quantization codebook with a large size for estimating TFO, we establish a \textit{graph-based channel reconstruction and collision resolution (GB-CR$^2$)} algorithm to iteratively reconstruct channels, resolve collisions, and compensate for TFO rotations on the formulated graph jointly among multiple stages. We further propose to leverage the geometric characteristics of signal constellations to correct TFO estimations. Exhaustive simulations demonstrate remarkable performance superiority in channel estimation and data recovery with substantial complexity reduction compared to state-of-the-art schemes.
Graph-based kNN algorithms have garnered widespread popularity for machine learning tasks, due to their simplicity and effectiveness. However, the conventional kNN graph's reliance on a fixed value of k can hinder its performance, especially in scenarios involving complex data distributions. Moreover, like other classification models, the presence of ambiguous samples along decision boundaries often presents a challenge, as they are more prone to incorrect classification. To address these issues, we propose the Preferential Attached k-Nearest Neighbors Graph (paNNG), which combines adaptive kNN with distribution-based graph construction. By incorporating distribution information, paNNG can significantly improve performance for ambiguous samples by "pulling" them towards their original classes and hence enable enhanced overall accuracy and generalization capability. Through rigorous evaluations on diverse benchmark datasets, paNNG outperforms state-of-the-art algorithms, showcasing its adaptability and efficacy across various real-world scenarios.
We present a novel ML framework for modeling the wavelength-dependent gain of multiple EDFAs, based on semi-supervised, self-normalizing neural networks, enabling one-shot transfer learning. Our experiments on 22 EDFAs in Open Ireland and COSMOS testbeds show high-accuracy transfer-learning even when operated across different amplifier types.
Through the increasing interconnection between various systems, the need for confidential systems is increasing. Confidential systems share data only with authorized entities. However, estimating the confidentiality of a system is complex, and adjusting an already deployed software is costly. Thus, it is helpful to have confidentiality analyses, which can estimate the confidentiality already at design time. Based on an existing data-flow-based confidentiality analysis concept, we reimplemented a data flow analysis as a Java-based tool. The tool uses the software architecture to identify access violations based on the data flow. The evaluation for our tool indicates that we can analyze similar scenarios and scale for certain scenarios better than the existing analysis.
We consider a decluttering problem where multiple rigid convex polygonal objects rest in randomly placed positions and orientations on a planar surface and must be efficiently transported to a packing box using both single and multi-object grasps. Prior work considered frictionless multi-object grasping. In this paper, we introduce friction to increase the number of potential grasps for a given group of objects, and thus increase picks per hour. We train a neural network using real examples to plan robust multi-object grasps. In physical experiments, we find a 13.7% increase in success rate, a 1.6x increase in picks per hour, and a 6.3x decrease in grasp planning time compared to prior work on multi-object grasping. Compared to single-object grasping, we find a 3.1x increase in picks per hour.
This paper presents a mini immersed finite element (IFE) method for solving two- and three-dimensional two-phase Stokes problems on Cartesian meshes. The IFE space is constructed from the conventional mini element with shape functions modified on interface elements according to interface jump conditions, while keeping the degrees of freedom unchanged. Both discontinuous viscosity coefficients and surface forces are considered in the construction. The interface is approximated via discrete level set functions and explicit formulas of IFE basis functions and correction functions are derived, which make the IFE method easy to implement. The optimal approximation capabilities of the IFE space and the inf-sup stability and the optimal a priori error estimate of the IFE method are derived rigorously with constants independent of the mesh size and how the interface cuts the mesh. It is also proved that the condition number has the usual bound independent of the interface. Numerical experiments are provided to confirm the theoretical results.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.