亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Stability and safety are critical properties for successful deployment of automatic control systems. As a motivating example, consider autonomous mobile robot navigation in a complex environment. A control design that generalizes to different operational conditions requires a model of the system dynamics, robustness to modeling errors, and satisfaction of safety \NEWZL{constraints}, such as collision avoidance. This paper develops a neural ordinary differential equation network to learn the dynamics of a Hamiltonian system from trajectory data. The learned Hamiltonian model is used to synthesize an energy-shaping passivity-based controller and analyze its \emph{robustness} to uncertainty in the learned model and its \emph{safety} with respect to constraints imposed by the environment. Given a desired reference path for the system, we extend our design using a virtual reference governor to achieve tracking control. The governor state serves as a regulation point that moves along the reference path adaptively, balancing the system energy level, model uncertainty bounds, and distance to safety violation to guarantee robustness and safety. Our Hamiltonian dynamics learning and tracking control techniques are demonstrated on \Revised{simulated hexarotor and quadrotor robots} navigating in cluttered 3D environments.

相關內容

In autonomous robotic decision-making under uncertainty, the tradeoff between exploitation and exploration of available options must be considered. If secondary information associated with options can be utilized, such decision-making problems can often be formulated as a contextual multi-armed bandits (CMABs). In this study, we apply active inference, which has been actively studied in the field of neuroscience in recent years, as an alternative action selection strategy for CMABs. Unlike conventional action selection strategies, it is possible to rigorously evaluate the uncertainty of each option when calculating the expected free energy (EFE) associated with the decision agent's probabilistic model, as derived from the free-energy principle. We specifically address the case where a categorical observation likelihood function is used, such that EFE values are analytically intractable. We introduce new approximation methods for computing the EFE based on variational and Laplace approximations. Extensive simulation study results demonstrate that, compared to other strategies, active inference generally requires far fewer iterations to identify optimal options and generally achieves superior cumulative regret, for relatively low extra computational cost.

Safely interacting with other traffic participants is one of the core requirements for autonomous driving, especially in intersections and occlusions. Most existing approaches are designed for particular scenarios and require significant human labor in parameter tuning to be applied to different situations. To solve this problem, we first propose a learning-based Interaction Point Model (IPM), which describes the interaction between agents with the protection time and interaction priority in a unified manner. We further integrate the proposed IPM into a novel planning framework, demonstrating its effectiveness and robustness through comprehensive simulations in highly dynamic environments.

Indoor motion planning focuses on solving the problem of navigating an agent through a cluttered environment. To date, quite a lot of work has been done in this field, but these methods often fail to find the optimal balance between computationally inexpensive online path planning, and optimality of the path. Along with this, these works often prove optimality for single-start single-goal worlds. To address these challenges, we present a multiple waypoint path planner and controller stack for navigation in unknown indoor environments where waypoints include the goal along with the intermediary points that the robot must traverse before reaching the goal. Our approach makes use of a global planner (to find the next best waypoint at any instant), a local planner (to plan the path to a specific waypoint), and an adaptive Model Predictive Control strategy (for robust system control and faster maneuvers). We evaluate our algorithm on a set of randomly generated obstacle maps, intermediate waypoints, and start-goal pairs, with results indicating a significant reduction in computational costs, with high accuracies and robust control.

This paper presents a solution to the automatic task planning problem for multi-agent systems. A formal framework is developed based on the Nondeterministic Finite Automata with $\epsilon$-transitions, where given the capabilities, constraints and failure modes of the agents involved, an initial state of the system and a task specification, an optimal solution is generated that satisfies the system constraints and the task specification. The resulting solution is guaranteed to be complete and optimal; moreover a heuristic solution that offers significant reduction of the computational requirements while relaxing the completeness and optimality requirements is proposed. The constructed system model is independent from the initial condition and the task specification, alleviating the need to repeat the costly pre-processing cycle for solving other scenarios, while allowing the incorporation of failure modes on-the-fly. Two case studies are provided: a simple one to showcase the concepts of the proposed methodology and a more elaborate one to demonstrate the effectiveness and validity of the methodology.

Moving Object Detection (MOD) is a critical vision task for successfully achieving safe autonomous driving. Despite plausible results of deep learning methods, most existing approaches are only frame-based and may fail to reach reasonable performance when dealing with dynamic traffic participants. Recent advances in sensor technologies, especially the Event camera, can naturally complement the conventional camera approach to better model moving objects. However, event-based works often adopt a pre-defined time window for event representation, and simply integrate it to estimate image intensities from events, neglecting much of the rich temporal information from the available asynchronous events. Therefore, from a new perspective, we propose RENet, a novel RGB-Event fusion Network, that jointly exploits the two complementary modalities to achieve more robust MOD under challenging scenarios for autonomous driving. Specifically, we first design a temporal multi-scale aggregation module to fully leverage event frames from both the RGB exposure time and larger intervals. Then we introduce a bi-directional fusion module to attentively calibrate and fuse multi-modal features. To evaluate the performance of our network, we carefully select and annotate a sub-MOD dataset from the commonly used DSEC dataset. Extensive experiments demonstrate that our proposed method performs significantly better than the state-of-the-art RGB-Event fusion alternatives.

Performing highly agile dynamic motions, such as jumping or running on uneven stepping stones has remained a challenging problem in legged robot locomotion. This paper presents a framework that combines trajectory optimization and model predictive control to perform robust and consecutive jumping on stepping stones. In our approach, we first utilize trajectory optimization based on full-nonlinear dynamics of the robot to generate periodic jumping trajectories for various jumping distances. A jumping controller based on a model predictive control is then designed for realizing smooth jumping transitions, enabling the robot to achieve continuous jumps on stepping stones. Thanks to the incorporation of MPC as a real-time feedback controller, the proposed framework is also validated to be robust to uneven platforms with unknown height perturbations and model uncertainty on the robot dynamics.

Density of the reachable states can help understand the risk of safety-critical systems, especially in situations when worst-case reachability is too conservative. Recent work provides a data-driven approach to compute the density distribution of autonomous systems' forward reachable states online. In this paper, we study the use of such approach in combination with model predictive control for verifiable safe path planning under uncertainties. We first use the learned density distribution to compute the risk of collision online. If such risk exceeds the acceptable threshold, our method will plan for a new path around the previous trajectory, with the risk of collision below the threshold. Our method is well-suited to handle systems with uncertainties and complicated dynamics as our data-driven approach does not need an analytical form of the systems' dynamics and can estimate forward state density with an arbitrary initial distribution of uncertainties. We design two challenging scenarios (autonomous driving and hovercraft control) for safe motion planning in environments with obstacles under system uncertainties. We first show that our density estimation approach can reach a similar accuracy as the Monte-Carlo-based method while using only 0.01X training samples. By leveraging the estimated risk, our algorithm achieves the highest success rate in goal reaching when enforcing the safety rate above 0.99.

This paper describes a resilient navigation and planning system used in the Indy Autonomous Challenge (IAC) competition. The IAC is a competition where full-scale race cars run autonomously on Indianapolis Motor Speedway(IMS) up to 290 km/h (180 mph). Race cars will experience severe vibrations. Especially at high speeds. These vibrations can degrade standard localization algorithms based on precision GPS-aided inertial measurement units. Degraded localization can lead to serious problems, including collisions. Therefore, we propose a resilient navigation system that enables a race car to stay within the track in the event of localization failures. Our navigation system uses a multi-sensor fusion-based Kalman filter. We detect degradation of the navigation solution using probabilistic approaches to computing optimal measurement values for the correction step of our Kalman filter. In addition, an optimal path planning algorithm for obstacle avoidance is proposed. In this challenge, the track has static obstacles on the track. The vehicle is required to avoid them with minimal time loss. By taking the original optimal racing line, obstacles, and vehicle dynamics into account, we propose a road-graph-based path planning algorithm to ensure that our race car can perform efficient obstacle avoidance. The proposed localization system was successfully validated to show its capability to prevent localization failures in the event of faulty GPS measurements during the historic world's first autonomous racing at IMS. Owing to our robust navigation and planning algorithm, we were able to finish the race as one of the top four teams while the remaining five teams failed to finish due to collisions or out-of-track violations.

Forecasting the future states of surrounding traffic participants is a crucial capability for autonomous vehicles. The recently proposed occupancy flow field prediction introduces a scalable and effective representation to jointly predict surrounding agents' future motions in a scene. However, the challenging part is to model the underlying social interactions among traffic agents and the relations between occupancy and flow. Therefore, this paper proposes a novel Multi-modal Hierarchical Transformer network that fuses the vectorized (agent motion) and visual (scene flow, map, and occupancy) modalities and jointly predicts the flow and occupancy of the scene. Specifically, visual and vector features from sensory data are encoded through a multi-stage Transformer module and then a late-fusion Transformer module with temporal pixel-wise attention. Importantly, a flow-guided multi-head self-attention (FG-MSA) module is designed to better aggregate the information on occupancy and flow and model the mathematical relations between them. The proposed method is comprehensively validated on the Waymo Open Motion Dataset and compared against several state-of-the-art models. The results reveal that our model with much more compact architecture and data inputs than other methods can achieve comparable performance. We also demonstrate the effectiveness of incorporating vectorized agent motion features and the proposed FG-MSA module. Compared to the ablated model without the FG-MSA module, which won 2nd place in the 2022 Waymo Occupancy and Flow Prediction Challenge, the current model shows better separability for flow and occupancy and further performance improvements.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

北京阿比特科技有限公司