Intersection over Union (IoU) is the most popular evaluation metric used in the object detection benchmarks. However, there is a gap between optimizing the commonly used distance losses for regressing the parameters of a bounding box and maximizing this metric value. The optimal objective for a metric is the metric itself. In the case of axis-aligned 2D bounding boxes, it can be shown that $IoU$ can be directly used as a regression loss. However, $IoU$ has a plateau making it infeasible to optimize in the case of non-overlapping bounding boxes. In this paper, we address the weaknesses of $IoU$ by introducing a generalized version as both a new loss and a new metric. By incorporating this generalized $IoU$ ($GIoU$) as a loss into the state-of-the art object detection frameworks, we show a consistent improvement on their performance using both the standard, $IoU$ based, and new, $GIoU$ based, performance measures on popular object detection benchmarks such as PASCAL VOC and MS COCO.
The task of detecting 3D objects in point cloud has a pivotal role in many real-world applications. However, 3D object detection performance is behind that of 2D object detection due to the lack of powerful 3D feature extraction methods. In order to address this issue, we propose to build a 3D backbone network to learn rich 3D feature maps by using sparse 3D CNN operations for 3D object detection in point cloud. The 3D backbone network can inherently learn 3D features from almost raw data without compressing point cloud into multiple 2D images and generate rich feature maps for object detection. The sparse 3D CNN takes full advantages of the sparsity in the 3D point cloud to accelerate computation and save memory, which makes the 3D backbone network achievable. Empirical experiments are conducted on the KITTI benchmark and results show that the proposed method can achieve state-of-the-art performance for 3D object detection.
We present a generalization of the Cauchy/Lorentzian, Geman-McClure, Welsch/Leclerc, generalized Charbonnier, Charbonnier/pseudo-Huber/L1-L2, and L2 loss functions. By introducing robustness as a continous parameter, our loss function allows algorithms built around robust loss minimization to be generalized, which improves performance on basic vision tasks such as registration and clustering. Interpreting our loss as the negative log of a univariate density yields a general probability distribution that includes normal and Cauchy distributions as special cases. This probabilistic interpretation enables the training of neural networks in which the robustness of the loss automatically adapts itself during training, which improves performance on learning-based tasks such as generative image synthesis and unsupervised monocular depth estimation, without requiring any manual parameter tuning.
Non-maximum suppression (NMS) is essential for state-of-the-art object detectors to localize object from a set of candidate locations. However, accurate candidate location sometimes is not associated with a high classification score, which leads to object localization failure during NMS. In this paper, we introduce a novel bounding box regression loss for learning bounding box transformation and localization variance together. The resulting localization variance exhibits a strong connection to localization accuracy, which is then utilized in our new non-maximum suppression method to improve localization accuracy for object detection. On MS-COCO, we boost the AP of VGG-16 faster R-CNN from 23.6% to 29.1% with a single model and nearly no additional computational overhead. More importantly, our method is able to improve the AP of ResNet-50 FPN fast R-CNN from 36.8% to 37.8%, which achieves state-of-the-art bounding box refinement result.
Generic object detection, aiming at locating object instances from a large number of predefined categories in natural images, is one of the most fundamental and challenging problems in computer vision. Deep learning techniques have emerged in recent years as powerful methods for learning feature representations directly from data, and have led to remarkable breakthroughs in the field of generic object detection. Given this time of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought by deep learning techniques. More than 250 key contributions are included in this survey, covering many aspects of generic object detection research: leading detection frameworks and fundamental subproblems including object feature representation, object proposal generation, context information modeling and training strategies; evaluation issues, specifically benchmark datasets, evaluation metrics, and state of the art performance. We finish by identifying promising directions for future research.
Average precision (AP), the area under the recall-precision (RP) curve, is the standard performance measure for object detection. Despite its wide acceptance, it has a number of shortcomings, the most important of which are (i) the inability to distinguish very different RP curves, and (ii) the lack of directly measuring bounding box localization accuracy. In this paper, we propose 'Localization Recall Precision (LRP) Error', a new metric which we specifically designed for object detection. LRP Error is composed of three components related to localization, false negative (FN) rate and false positive (FP) rate. Based on LRP, we introduce the 'Optimal LRP', the minimum achievable LRP error representing the best achievable configuration of the detector in terms of recall-precision and the tightness of the boxes. In contrast to AP, which considers precisions over the entire recall domain, Optimal LRP determines the 'best' confidence score threshold for a class, which balances the trade-off between localization and recall-precision. In our experiments, we show that, for state-of-the-art object (SOTA) detectors, Optimal LRP provides richer and more discriminative information than AP. We also demonstrate that the best confidence score thresholds vary significantly among classes and detectors. Moreover, we present LRP results of a simple online video object detector which uses a SOTA still image object detector and show that the class-specific optimized thresholds increase the accuracy against the common approach of using a general threshold for all classes. We provide the source code that can compute LRP for the PASCAL VOC and MSCOCO datasets in //github.com/cancam/LRP. Our source code can easily be adapted to other datasets as well.
Image captioning approaches currently generate descriptions which lack specific information, such as named entities that are involved in the images. In this paper we propose a new task which aims to generate informative image captions, given images and hashtags as input. We propose a simple, but effective approach in which we, first, train a CNN-LSTM model to generate a template caption based on the input image. Then we use a knowledge graph based collective inference algorithm to fill in the template with specific named entities retrieved via the hashtags. Experiments on a new benchmark dataset collected from Flickr show that our model generates news-style image descriptions with much richer information. The METEOR score of our model almost triples the score of the baseline image captioning model on our benchmark dataset, from 4.8 to 13.60.
Although Faster R-CNN and its variants have shown promising performance in object detection, they only exploit simple first-order representation of object proposals for final classification and regression. Recent classification methods demonstrate that the integration of high-order statistics into deep convolutional neural networks can achieve impressive improvement, but their goal is to model whole images by discarding location information so that they cannot be directly adopted to object detection. In this paper, we make an attempt to exploit high-order statistics in object detection, aiming at generating more discriminative representations for proposals to enhance the performance of detectors. To this end, we propose a novel Multi-scale Location-aware Kernel Representation (MLKP) to capture high-order statistics of deep features in proposals. Our MLKP can be efficiently computed on a modified multi-scale feature map using a low-dimensional polynomial kernel approximation.Moreover, different from existing orderless global representations based on high-order statistics, our proposed MLKP is location retentive and sensitive so that it can be flexibly adopted to object detection. Through integrating into Faster R-CNN schema, the proposed MLKP achieves very competitive performance with state-of-the-art methods, and improves Faster R-CNN by 4.9% (mAP), 4.7% (mAP) and 5.0% (AP at IOU=[0.5:0.05:0.95]) on PASCAL VOC 2007, VOC 2012 and MS COCO benchmarks, respectively. Code is available at: //github.com/Hwang64/MLKP.
Interest point descriptors have fueled progress on almost every problem in computer vision. Recent advances in deep neural networks have enabled task-specific learned descriptors that outperform hand-crafted descriptors on many problems. We demonstrate that commonly used metric learning approaches do not optimally leverage the feature hierarchies learned in a Convolutional Neural Network (CNN), especially when applied to the task of geometric feature matching. While a metric loss applied to the deepest layer of a CNN, is often expected to yield ideal features irrespective of the task, in fact the growing receptive field as well as striding effects cause shallower features to be better at high precision matching tasks. We leverage this insight together with explicit supervision at multiple levels of the feature hierarchy for better regularization, to learn more effective descriptors in the context of geometric matching tasks. Further, we propose to use activation maps at different layers of a CNN, as an effective and principled replacement for the multi-resolution image pyramids often used for matching tasks. We propose concrete CNN architectures employing these ideas, and evaluate them on multiple datasets for 2D and 3D geometric matching as well as optical flow, demonstrating state-of-the-art results and generalization across datasets.
We demonstrate that many detection methods are designed to identify only a sufficently accurate bounding box, rather than the best available one. To address this issue we propose a simple and fast modification to the existing methods called Fitness NMS. This method is tested with the DeNet model and obtains a significantly improved MAP at greater localization accuracies without a loss in evaluation rate, and can be used in conjunction with Soft NMS for additional improvements. Next we derive a novel bounding box regression loss based on a set of IoU upper bounds that better matches the goal of IoU maximization while still providing good convergence properties. Following these novelties we investigate RoI clustering schemes for improving evaluation rates for the DeNet wide model variants and provide an analysis of localization performance at various input image dimensions. We obtain a MAP of 33.6%@79Hz and 41.8%@5Hz for MSCOCO and a Titan X (Maxwell). Source code available from: //github.com/lachlants/denet
Class labels have been empirically shown useful in improving the sample quality of generative adversarial nets (GANs). In this paper, we mathematically study the properties of the current variants of GANs that make use of class label information. With class aware gradient and cross-entropy decomposition, we reveal how class labels and associated losses influence GAN's training. Based on that, we propose Activation Maximization Generative Adversarial Networks (AM-GAN) as an advanced solution. Comprehensive experiments have been conducted to validate our analysis and evaluate the effectiveness of our solution, where AM-GAN outperforms other strong baselines and achieves state-of-the-art Inception Score (8.91) on CIFAR-10. In addition, we demonstrate that, with the Inception ImageNet classifier, Inception Score mainly tracks the diversity of the generator, and there is, however, no reliable evidence that it can reflect the true sample quality. We thus propose a new metric, called AM Score, to provide more accurate estimation on the sample quality. Our proposed model also outperforms the baseline methods in the new metric.