亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We establish explicit dynamics for neural networks whose training objective has a regularising term that constrains the parameters to remain close to their initial value. This keeps the network in a lazy training regime, where the dynamics can be linearised around the initialisation. The standard neural tangent kernel (NTK) governs the evolution during the training in the infinite-width limit, although the regularisation yields an additional term appears in the differential equation describing the dynamics. This setting provides an appropriate framework to study the evolution of wide networks trained to optimise generalisation objectives such as PAC-Bayes bounds, and hence potentially contribute to a deeper theoretical understanding of such networks.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Deep neural networks are widely deployed in many fields. Due to the in-situ computation (known as processing in memory) capacity of the Resistive Random Access Memory (ReRAM) crossbar, ReRAM-based accelerator shows potential in accelerating DNN with low power and high performance. However, despite power advantage, such kind of accelerators suffer from the high power consumption of peripheral circuits, especially Analog-to-Digital Converter (ADC), which account for over 60 percent of total power consumption. This problem hinders the ReRAM-based accelerator to achieve higher efficiency. Some redundant Analog-to-Digital conversion operations have no contribution to maintaining inference accuracy, and such operations can be eliminated by modifying the ADC searching logic. Based on such observations, we propose an algorithm-hardware co-design method and explore the co-design approach in both hardware design and quantization algorithms. Firstly, we focus on the distribution output along the crossbar's bit-lines and identify the fine-grained redundant ADC sampling bits. % of weight and To further compress ADC bits, we propose a hardware-friendly quantization method and coding scheme, in which different quantization strategy was applied to the partial results in different intervals. To support the two features above, we propose a lightweight architectural design based on SAR-ADC\@. It's worth mentioning that our method is not only more energy efficient but also retains the flexibility of the algorithm. Experiments demonstrate that our method can reduce about $1.6 \sim 2.3 \times$ ADC power reduction.

Large pre-trained language models have recently been expanded and applied to programming language tasks with great success, often through further pre-training of a strictly-natural language model--where training sequences typically contain both natural and (linearised) programming language. Such approaches effectively map both modalities of the sequence into the same embedding space. However, programming language keywords (e.g. ``while'') often have very strictly defined semantics. As such, transfer learning from their natural language usage may not necessarily be beneficial to their code application and vise versa. Assuming an already pre-trained language model, in this work we investigate how sequence tokens can be adapted and represented differently, depending on which modality they belong to, and to the ultimate benefit of the downstream task. We experiment with separating embedding spaces between modalities during further model pre-training with modality-relative training objectives. We focus on text-to-code generation and observe consistent improvements across two backbone models and two test sets, measuring pass@$k$ and a novel incremental variation.

Deep learning solvers for partial differential equations typically have limited accuracy. We propose to overcome this problem by using them as preconditioners. More specifically, we apply discretization-invariant neural operators to learn preconditioners for the flexible conjugate gradient method (FCG). Architecture paired with novel loss function and training scheme allows for learning efficient preconditioners that can be used across different resolutions. On the theoretical side, FCG theory allows us to safely use nonlinear preconditioners that can be applied in $O(N)$ operations without constraining the form of the preconditioners matrix. To justify learning scheme components (the loss function and the way training data is collected) we perform several ablation studies. Numerical results indicate that our approach favorably compares with classical preconditioners and allows to reuse of preconditioners learned for lower resolution to the higher resolution data.

We propose a new loss function for supervised and physics-informed training of neural networks and operators that incorporates a posteriori error estimate. More specifically, during the training stage, the neural network learns additional physical fields that lead to rigorous error majorants after a computationally cheap postprocessing stage. Theoretical results are based upon the theory of functional a posteriori error estimates, which allows for the systematic construction of such loss functions for a diverse class of practically relevant partial differential equations. From the numerical side, we demonstrate on a series of elliptic problems that for a variety of architectures and approaches (physics-informed neural networks, physics-informed neural operators, neural operators, and classical architectures in the regression and physics-informed settings), we can reach better or comparable accuracy and in addition to that cheaply recover high-quality upper bounds on the error after training.

Understanding the mechanisms through which neural networks extract statistics from input-label pairs is one of the most important unsolved problems in supervised learning. Prior works have identified that the gram matrices of the weights in trained neural networks of general architectures are proportional to the average gradient outer product of the model, in a statement known as the Neural Feature Ansatz (NFA). However, the reason these quantities become correlated during training is poorly understood. In this work, we explain the emergence of this correlation. We identify that the NFA is equivalent to alignment between the left singular structure of the weight matrices and a significant component of the empirical neural tangent kernels associated with those weights. We establish that the NFA introduced in prior works is driven by a centered NFA that isolates this alignment. We show that the speed of NFA development can be predicted analytically at early training times in terms of simple statistics of the inputs and labels. Finally, we introduce a simple intervention to increase NFA correlation at any given layer, which dramatically improves the quality of features learned.

We present MIPS, a novel method for program synthesis based on automated mechanistic interpretability of neural networks trained to perform the desired task, auto-distilling the learned algorithm into Python code. We test MIPS on a benchmark of 62 algorithmic tasks that can be learned by an RNN and find it highly complementary to GPT-4: MIPS solves 32 of them, including 13 that are not solved by GPT-4 (which also solves 30). MIPS uses an integer autoencoder to convert the RNN into a finite state machine, then applies Boolean or integer symbolic regression to capture the learned algorithm. As opposed to large language models, this program synthesis technique makes no use of (and is therefore not limited by) human training data such as algorithms and code from GitHub. We discuss opportunities and challenges for scaling up this approach to make machine-learned models more interpretable and trustworthy.

Speech intelligibility can be degraded due to multiple factors, such as noisy environments, technical difficulties or biological conditions. This work is focused on the development of an automatic non-intrusive system for predicting the speech intelligibility level in this latter case. The main contribution of our research on this topic is the use of Long Short-Term Memory (LSTM) networks with log-mel spectrograms as input features for this purpose. In addition, this LSTM-based system is further enhanced by the incorporation of a simple attention mechanism that is able to determine the more relevant frames to this task. The proposed models are evaluated with the UA-Speech database that contains dysarthric speech with different degrees of severity. Results show that the attention LSTM architecture outperforms both, a reference Support Vector Machine (SVM)-based system with hand-crafted features and a LSTM-based system with Mean-Pooling.

In the past few years, the emergence of pre-training models has brought uni-modal fields such as computer vision (CV) and natural language processing (NLP) to a new era. Substantial works have shown they are beneficial for downstream uni-modal tasks and avoid training a new model from scratch. So can such pre-trained models be applied to multi-modal tasks? Researchers have explored this problem and made significant progress. This paper surveys recent advances and new frontiers in vision-language pre-training (VLP), including image-text and video-text pre-training. To give readers a better overall grasp of VLP, we first review its recent advances from five aspects: feature extraction, model architecture, pre-training objectives, pre-training datasets, and downstream tasks. Then, we summarize the specific VLP models in detail. Finally, we discuss the new frontiers in VLP. To the best of our knowledge, this is the first survey on VLP. We hope that this survey can shed light on future research in the VLP field.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

北京阿比特科技有限公司