亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Robotic crop phenotyping has emerged as a key technology to assess crops' morphological and physiological traits at scale. These phenotypical measurements are essential for developing new crop varieties with the aim of increasing productivity and dealing with environmental challenges such as climate change. However, developing and deploying crop phenotyping robots face many challenges such as complex and variable crop shapes that complicate robotic object detection, dynamic and unstructured environments that baffle robotic control, and real-time computing and managing big data that challenge robotic hardware/software. This work specifically tackles the first challenge by proposing a novel Digital-Twin(DT)MARS-CycleGAN model for image augmentation to improve our Modular Agricultural Robotic System (MARS)'s crop object detection from complex and variable backgrounds. Our core idea is that in addition to the cycle consistency losses in the CycleGAN model, we designed and enforced a new DT-MARS loss in the deep learning model to penalize the inconsistency between real crop images captured by MARS and synthesized images sensed by DT MARS. Therefore, the generated synthesized crop images closely mimic real images in terms of realism, and they are employed to fine-tune object detectors such as YOLOv8. Extensive experiments demonstrated that our new DT/MARS-CycleGAN framework significantly boosts our MARS' crop object/row detector's performance, contributing to the field of robotic crop phenotyping.

相關內容

機(ji)器(qi)人(ren)(ren)(ren)(英語:Robot)包括一(yi)切模擬(ni)人(ren)(ren)(ren)類行(xing)為或思(si)想與模擬(ni)其他生物的機(ji)械(如(ru)機(ji)器(qi)狗,機(ji)器(qi)貓等)。狹義(yi)上對機(ji)器(qi)人(ren)(ren)(ren)的定義(yi)還有很多分(fen)類法及爭(zheng)議,有些電腦程序甚至(zhi)也被(bei)稱為機(ji)器(qi)人(ren)(ren)(ren)。在當代工(gong)業中,機(ji)器(qi)人(ren)(ren)(ren)指能自動運(yun)行(xing)任務(wu)的人(ren)(ren)(ren)造機(ji)器(qi)設(she)備,用以(yi)取代或協助人(ren)(ren)(ren)類工(gong)作,一(yi)般會是機(ji)電設(she)備,由計算(suan)機(ji)程序或是電子電路控制。

知識薈萃

精品入門(men)和進階教程、論文和代碼(ma)整理等

更多

查看相關VIP內容、論文(wen)、資訊等

Detecting the objects in dense and rotated scenes is a challenging task. Recent works on this topic are mostly based on Faster RCNN or Retinanet. As they are highly dependent on the pre-set dense anchors and the NMS operation, the approach is indirect and suboptimal.The end-to-end DETR-based detectors have achieved great success in horizontal object detection and many other areas like segmentation, tracking, action recognition and etc.However, the DETR-based detectors perform poorly on dense rotated target tasks and perform worse than most modern CNN-based detectors. In this paper, we find the most significant reason for the poor performance is that the original attention can not accurately focus on the oriented targets. Accordingly, we propose Rotated object detection TRansformer (RotaTR) as an extension of DETR to oriented detection. Specifically, we design Rotation Sensitive deformable (RSDeform) attention to enhance the DETR's ability to detect oriented targets. It is used to build the feature alignment module and rotation-sensitive decoder for our model. We test RotaTR on four challenging-oriented benchmarks. It shows a great advantage in detecting dense and oriented objects compared to the original DETR. It also achieves competitive results when compared to the state-of-the-art.

Dense simultaneous localization and mapping (SLAM) is pivotal for embodied scene understanding. Recent work has shown that 3D Gaussians enable high-quality reconstruction and real-time rendering of scenes using multiple posed cameras. In this light, we show for the first time that representing a scene by 3D Gaussians can enable dense SLAM using a single unposed monocular RGB-D camera. Our method, SplaTAM, addresses the limitations of prior radiance field-based representations, including fast rendering and optimization, the ability to determine if areas have been previously mapped, and structured map expansion by adding more Gaussians. We employ an online tracking and mapping pipeline while tailoring it to specifically use an underlying Gaussian representation and silhouette-guided optimization via differentiable rendering. Extensive experiments show that SplaTAM achieves up to 2X state-of-the-art performance in camera pose estimation, map construction, and novel-view synthesis, demonstrating its superiority over existing approaches, while allowing real-time rendering of a high-resolution dense 3D map.

Particle Swarm Optimization (PSO) is a stochastic technique for solving the optimization problem. Attempts have been made to shorten the computation times of PSO based algorithms with massive threads on GPUs (graphic processing units), where thread groups are formed to calculate the information of particles and the computed outputs for the particles are aggregated and analyzed to find the best solution. In particular, the reduction-based method is considered as a common approach to handle the data aggregation and analysis for the calculated particle information. Nevertheless, based on our analysis, the reduction-based method would suffer from excessive memory accesses and thread synchronization overheads. In this paper, we propose a novel algorithm to alleviate the above overheads with the atomic functions. The threads within a thread group update the calculated results atomically to the intra-group data queue conditionally, which prevents the frequent accesses to the memory as done by the parallel reduction operations. Furthermore, we develop an enhanced version of the algorithm to alleviate the synchronization barrier among the thread groups, which is achieved by allowing the thread groups to run asynchronously and updating to the global, lock-protected variables occasionally if necessary. Our experimental results show that our proposed algorithm running on the Nvidia GPU is about 200 times faster than the serial version executed by the Intel Xeon CPU. Moreover, the novel algorithm outperforms the state-of-the-art method (the parallel reduction approach) by a factor of 2.2.

Chat models, such as ChatGPT, have shown impressive capabilities and have been rapidly adopted across numerous domains. However, these models are only accessible through a restricted API, creating barriers for new research and progress in the field. We propose a pipeline that can automatically generate a high-quality multi-turn chat corpus by leveraging ChatGPT to engage in a conversation with itself. Subsequently, we employ parameter-efficient tuning to enhance LLaMA, an open-source large language model. The resulting model, named Baize, demonstrates good performance in multi-turn dialogues with guardrails that minimize potential risks. Furthermore, we propose a new technique called Self-Distill with Feedback, to further improve the performance of the Baize models with feedback from ChatGPT. The Baize models and data are released for research purposes only at //github.com/project-baize/baize-chatbot. An online demo is also available at //huggingface.co/spaces/project-baize/chat-with-baize.

Generative foundation models are susceptible to implicit biases that can arise from extensive unsupervised training data. Such biases can produce suboptimal samples, skewed outcomes, and unfairness, with potentially serious consequences. Consequently, aligning these models with human ethics and preferences is an essential step toward ensuring their responsible and effective deployment in real-world applications. Prior research has primarily employed Reinforcement Learning from Human Feedback (RLHF) to address this problem, where generative models are fine-tuned with RL algorithms guided by a human-feedback-informed reward model. However, the inefficiencies and instabilities associated with RL algorithms frequently present substantial obstacles to the successful alignment, necessitating the development of a more robust and streamlined approach. To this end, we introduce a new framework, Reward rAnked FineTuning (RAFT), designed to align generative models effectively. Utilizing a reward model and a sufficient number of samples, our approach selects the high-quality samples, discarding those that exhibit undesired behavior, and subsequently enhancing the model by fine-tuning on these filtered samples. Our studies show that RAFT can effectively improve the model performance in both reward learning and other automated metrics in both large language models and diffusion models.

Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.

Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.

The considerable significance of Anomaly Detection (AD) problem has recently drawn the attention of many researchers. Consequently, the number of proposed methods in this research field has been increased steadily. AD strongly correlates with the important computer vision and image processing tasks such as image/video anomaly, irregularity and sudden event detection. More recently, Deep Neural Networks (DNNs) offer a high performance set of solutions, but at the expense of a heavy computational cost. However, there is a noticeable gap between the previously proposed methods and an applicable real-word approach. Regarding the raised concerns about AD as an ongoing challenging problem, notably in images and videos, the time has come to argue over the pitfalls and prospects of methods have attempted to deal with visual AD tasks. Hereupon, in this survey we intend to conduct an in-depth investigation into the images/videos deep learning based AD methods. We also discuss current challenges and future research directions thoroughly.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.

北京阿比特科技有限公司