亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Software is a central part of modern science, and knowledge of its use is crucial for the scientific community with respect to reproducibility and attribution of its developers. Several studies have investigated in-text mentions of software and its quality, while the quality of formal software citations has only been analyzed superficially. This study performs an in-depth evaluation of formal software citation based on a set of manually annotated software references. It examines which resources are cited for software usage, to what extend they allow proper identification of software and its specific version, how this information is made available by scientific publishers, and how well it is represented in large-scale bibliographic databases. The results show that software articles are the most cited resource for software, while direct software citations are better suited for identification of software versions. Moreover, we found current practices by both, publishers and bibliographic databases, to be unsuited to represent these direct software citations, hindering large-scale analyses such as assessing software impact. We argue that current practices for representing software citations -- the recommended way to cite software by current citation standards -- stand in the way of their adaption by the scientific community, and urge providers of bibliographic data to explicitly model scientific software.

相關內容

Guidance on how to validate computational text-based measures of social constructs is fragmented. While researchers generally acknowledge the importance of validating text-based measures, they often lack a shared vocabulary and a unified framework to do so. This paper introduces ValiText, a new validation framework designed to assist scholars in validly measuring social constructs in textual data. The framework is built on a conceptual foundation of validity in the social sciences, strengthened by an empirical review of validation practices in the social sciences and consultations with experts. Ultimately, ValiText prescribes researchers to demonstrate three types of validation evidence: substantive evidence (outlining the theoretical underpinning of the measure), structural evidence (examining the properties of the text model and its output) and external evidence (testing for how the measure relates to independent information). The framework is further supplemented by a checklist of validation steps, offering practical guidance in the form of documentation sheets that guide researchers in the validation process.

Nonparametric density estimation is an unsupervised learning problem. In this work we propose a two-step procedure that casts the density estimation problem in the first step into a supervised regression problem. The advantage is that we can afterwards apply supervised learning methods. Compared to the standard nonparametric regression setting, the proposed procedure creates, however, dependence among the training samples. To derive statistical risk bounds, one can therefore not rely on the well-developed theory for i.i.d. data. To overcome this, we prove an oracle inequality for this specific form of data dependence. As an application, it is shown that under a compositional structure assumption on the underlying density, the proposed two-step method achieves convergence rates that are faster than the standard nonparametric rates. A simulation study illustrates the finite sample performance.

Diffusion models have emerged as effective distribution estimators in vision, language, and reinforcement learning, but their use as priors in downstream tasks poses an intractable posterior inference problem. This paper studies amortized sampling of the posterior over data, $\mathbf{x}\sim p^{\rm post}(\mathbf{x})\propto p(\mathbf{x})r(\mathbf{x})$, in a model that consists of a diffusion generative model prior $p(\mathbf{x})$ and a black-box constraint or likelihood function $r(\mathbf{x})$. We state and prove the asymptotic correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from this posterior, a problem that existing methods solve only approximately or in restricted cases. Relative trajectory balance arises from the generative flow network perspective on diffusion models, which allows the use of deep reinforcement learning techniques to improve mode coverage. Experiments illustrate the broad potential of unbiased inference of arbitrary posteriors under diffusion priors: in vision (classifier guidance), language (infilling under a discrete diffusion LLM), and multimodal data (text-to-image generation). Beyond generative modeling, we apply relative trajectory balance to the problem of continuous control with a score-based behavior prior, achieving state-of-the-art results on benchmarks in offline reinforcement learning.

Accurate prediction of antibody structure is a central task in the design and development of monoclonal antibodies, notably to understand both their developability and their binding properties. In this article, we introduce ABodyBuilder3, an improved and scalable antibody structure prediction model based on ImmuneBuilder. We achieve a new state-of-the-art accuracy in the modelling of CDR loops by leveraging language model embeddings, and show how predicted structures can be further improved through careful relaxation strategies. Finally, we incorporate a predicted Local Distance Difference Test into the model output to allow for a more accurate estimation of uncertainties.

Differential abundance analysis is a key component of microbiome studies. While dozens of methods for it exist, currently, there is no consensus on the preferred methods. Correctness of results in differential abundance analysis is an ambiguous concept that cannot be evaluated without employing simulated data, but we argue that consistency of results across datasets should be considered as an essential quality of a well-performing method. We compared the performance of 14 differential abundance analysis methods employing datasets from 54 taxonomic profiling studies based on 16S rRNA gene or shotgun sequencing. For each method, we examined how the results replicated between random partitions of each dataset and between datasets from independent studies. While certain methods showed good consistency, some widely used methods were observed to produce a substantial number of conflicting findings. Overall, the highest consistency without unnecessary reduction in sensitivity was attained by analyzing relative abundances with a non-parametric method (Wilcoxon test or ordinal regression model) or linear regression (MaAsLin2). Comparable performance was also attained by analyzing presence/absence of taxa with logistic regression.

Many scientific models are composed of multiple discrete components, and scientists often make heuristic decisions about which components to include. Bayesian inference provides a mathematical framework for systematically selecting model components, but defining prior distributions over model components and developing associated inference schemes has been challenging. We approach this problem in a simulation-based inference framework: We define model priors over candidate components and, from model simulations, train neural networks to infer joint probability distributions over both model components and associated parameters. Our method, simulation-based model inference (SBMI), represents distributions over model components as a conditional mixture of multivariate binary distributions in the Grassmann formalism. SBMI can be applied to any compositional stochastic simulator without requiring likelihood evaluations. We evaluate SBMI on a simple time series model and on two scientific models from neuroscience, and show that it can discover multiple data-consistent model configurations, and that it reveals non-identifiable model components and parameters. SBMI provides a powerful tool for data-driven scientific inquiry which will allow scientists to identify essential model components and make uncertainty-informed modelling decisions.

Statistical significance of both the original and the replication study is a commonly used criterion to assess replication attempts, also known as the two-trials rule in drug development. However, replication studies are sometimes conducted although the original study is non-significant, in which case Type-I error rate control across both studies is no longer guaranteed. We propose an alternative method to assess replicability using the sum of p-values from the two studies. The approach provides a combined p-value and can be calibrated to control the overall Type-I error rate at the same level as the two-trials rule but allows for replication success even if the original study is non-significant. The unweighted version requires a less restrictive level of significance at replication if the original study is already convincing which facilitates sample size reductions of up to 10%. Downweighting the original study accounts for possible bias and requires a more stringent significance level and larger samples sizes at replication. Data from four large-scale replication projects are used to illustrate and compare the proposed method with the two-trials rule, meta-analysis and Fisher's combination method.

Given a finite set of matrices with integer entries, the matrix mortality problem asks if there exists a product of these matrices equal to the zero matrix. We consider a special case of this problem where all entries of the matrices are nonnegative. This case is equivalent to the NFA mortality problem, which, given an NFA, asks for a word $w$ such that the image of every state under $w$ is the empty set. The size of the alphabet of the NFA is then equal to the number of matrices in the set. We study the length of shortest such words depending on the size of the alphabet. We show that this length for an NFA with $n$ states can be at least $2^n - 1$, $2^{(n - 4)/2}$ and $2^{(n - 2)/3}$ if the size of the alphabet is, respectively, equal to $n$, three and two.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

北京阿比特科技有限公司