Data movement between the processor and the main memory is a first-order obstacle against improving performance and energy efficiency in modern systems. To address this obstacle, Processing-using-Memory (PuM) is a promising approach where bulk-bitwise operations are performed leveraging intrinsic analog properties within the DRAM array and massive parallelism across DRAM columns. Unfortunately, 1) modern off-the-shelf DRAM chips do not officially support PuM operations, and 2) existing techniques of performing PuM operations on off-the-shelf DRAM chips suffer from two key limitations. First, these techniques have low success rates, i.e., only a small fraction of DRAM columns can correctly execute PuM operations because they operate beyond manufacturer-recommended timing constraints, causing these operations to be highly susceptible to noise and process variation. Second, these techniques have limited compute primitives, preventing them from fully leveraging parallelism across DRAM columns and thus hindering their performance benefits. We propose PULSAR, a new technique to enable high-success-rate and high-performance PuM operations in off-the-shelf DRAM chips. PULSAR leverages our new observation that a carefully crafted sequence of DRAM commands simultaneously activates up to 32 DRAM rows. PULSAR overcomes the limitations of existing techniques by 1) replicating the input data to improve the success rate and 2) enabling new bulk bitwise operations (e.g., many-input majority, Multi-RowInit, and Bulk-Write) to improve the performance. Our analysis on 120 off-the-shelf DDR4 chips from two major manufacturers shows that PULSAR achieves a 24.18% higher success rate and 121% higher performance over seven arithmetic-logic operations compared to FracDRAM, a state-of-the-art off-the-shelf DRAM-based PuM technique.
Transformer-based entropy models have gained prominence in recent years due to their superior ability to capture long-range dependencies in probability distribution estimation compared to convolution-based methods. However, previous transformer-based entropy models suffer from a sluggish coding process due to pixel-wise autoregression or duplicated computation during inference. In this paper, we propose a novel transformer-based entropy model called GroupedMixer, which enjoys both faster coding speed and better compression performance than previous transformer-based methods. Specifically, our approach builds upon group-wise autoregression by first partitioning the latent variables into groups along spatial-channel dimensions, and then entropy coding the groups with the proposed transformer-based entropy model. The global causal self-attention is decomposed into more efficient group-wise interactions, implemented using inner-group and cross-group token-mixers. The inner-group token-mixer incorporates contextual elements within a group while the cross-group token-mixer interacts with previously decoded groups. Alternate arrangement of two token-mixers enables global contextual reference. To further expedite the network inference, we introduce context cache optimization to GroupedMixer, which caches attention activation values in cross-group token-mixers and avoids complex and duplicated computation. Experimental results demonstrate that the proposed GroupedMixer yields the state-of-the-art rate-distortion performance with fast compression speed.
The problem of optimizing discrete phases in a reconfigurable intelligent surface (RIS) to maximize the received power at a user equipment is addressed. Necessary and sufficient conditions to achieve this maximization are given. These conditions are employed in an algorithm to achieve the maximization. New versions of the algorithm are given that are proven to achieve convergence in N or fewer steps whether the direct link is completely blocked or not, where N is the number of the RIS elements, whereas previously published results achieve this in KN or 2N number of steps where K is the number of discrete phases. Thus, for a discrete-phase RIS, the techniques presented in this paper achieve the optimum received power in the smallest number of steps published in the literature. In addition, in each of those N steps, the techniques presented in this paper determine only one or a small number of phase shifts with a simple elementwise update rule, which result in a substantial reduction of computation time, as compared to the algorithms in the literature. As a secondary result, we define the uniform polar quantization (UPQ) algorithm which is an intuitive quantization algorithm that can approximate the continuous solution with an approximation ratio of sinc^2(1/K) and achieve low time-complexity, given perfect knowledge of the channel.
Multi-object tracking (MOT) methods have seen a significant boost in performance recently, due to strong interest from the research community and steadily improving object detection methods. The majority of tracking methods follow the tracking-by-detection (TBD) paradigm, blindly trust the incoming detections with no sense of their associated localization uncertainty. This lack of uncertainty awareness poses a problem in safety-critical tasks such as autonomous driving where passengers could be put at risk due to erroneous detections that have propagated to downstream tasks, including MOT. While there are existing works in probabilistic object detection that predict the localization uncertainty around the boxes, no work in 2D MOT for autonomous driving has studied whether these estimates are meaningful enough to be leveraged effectively in object tracking. We introduce UncertaintyTrack, a collection of extensions that can be applied to multiple TBD trackers to account for localization uncertainty estimates from probabilistic object detectors. Experiments on the Berkeley Deep Drive MOT dataset show that the combination of our method and informative uncertainty estimates reduces the number of ID switches by around 19\% and improves mMOTA by 2-3%. The source code is available at //github.com/TRAILab/UncertaintyTrack
Fairness is steadily becoming a crucial requirement of Machine Learning (ML) systems. A particularly important notion is subgroup fairness, i.e., fairness in subgroups of individuals that are defined by more than one attributes. Identifying bias in subgroups can become both computationally challenging, as well as problematic with respect to comprehensibility and intuitiveness of the finding to end users. In this work we focus on the latter aspects; we propose an explainability method tailored to identifying potential bias in subgroups and visualizing the findings in a user friendly manner to end users. In particular, we extend the ALE plots explainability method, proposing FALE (Fairness aware Accumulated Local Effects) plots, a method for measuring the change in fairness for an affected population corresponding to different values of a feature (attribute). We envision FALE to function as an efficient, user friendly, comprehensible and reliable first-stage tool for identifying subgroups with potential bias issues.
Accurately simulating diverse behaviors of heterogeneous agents in various scenarios is fundamental to autonomous driving simulation. This task is challenging due to the multi-modality of behavior distribution, the high-dimensionality of driving scenarios, distribution shift, and incomplete information. Our first insight is to leverage state-matching through differentiable simulation to provide meaningful learning signals and achieve efficient credit assignment for the policy. This is demonstrated by revealing the existence of gradient highways and interagent gradient pathways. However, the issues of gradient explosion and weak supervision in low-density regions are discovered. Our second insight is that these issues can be addressed by applying dual policy regularizations to narrow the function space. Further considering diversity, our third insight is that the behaviors of heterogeneous agents in the dataset can be effectively compressed as a series of prototype vectors for retrieval. These lead to our model-based reinforcement-imitation learning framework with temporally abstracted mixture-of-codebooks (MRIC). MRIC introduces the open-loop modelbased imitation learning regularization to stabilize training, and modelbased reinforcement learning (RL) regularization to inject domain knowledge. The RL regularization involves differentiable Minkowskidifference-based collision avoidance and projection-based on-road and traffic rule compliance rewards. A dynamic multiplier mechanism is further proposed to eliminate the interference from the regularizations while ensuring their effectiveness. Experimental results using the largescale Waymo open motion dataset show that MRIC outperforms state-ofthe-art baselines on diversity, behavioral realism, and distributional realism, with large margins on some key metrics (e.g., collision rate, minSADE, and time-to-collision JSD).
Blockchain technology has rapidly emerged to mainstream attention, while its publicly accessible, heterogeneous, massive-volume, and temporal data are reminiscent of the complex dynamics encountered during the last decade of big data. Unlike any prior data source, blockchain datasets encompass multiple layers of interactions across real-world entities, e.g., human users, autonomous programs, and smart contracts. Furthermore, blockchain's integration with cryptocurrencies has introduced financial aspects of unprecedented scale and complexity such as decentralized finance, stablecoins, non-fungible tokens, and central bank digital currencies. These unique characteristics present both opportunities and challenges for machine learning on blockchain data. On one hand, we examine the state-of-the-art solutions, applications, and future directions associated with leveraging machine learning for blockchain data analysis critical for the improvement of blockchain technology such as e-crime detection and trends prediction. On the other hand, we shed light on the pivotal role of blockchain by providing vast datasets and tools that can catalyze the growth of the evolving machine learning ecosystem. This paper serves as a comprehensive resource for researchers, practitioners, and policymakers, offering a roadmap for navigating this dynamic and transformative field.
Multi-modal 3D scene understanding has gained considerable attention due to its wide applications in many areas, such as autonomous driving and human-computer interaction. Compared to conventional single-modal 3D understanding, introducing an additional modality not only elevates the richness and precision of scene interpretation but also ensures a more robust and resilient understanding. This becomes especially crucial in varied and challenging environments where solely relying on 3D data might be inadequate. While there has been a surge in the development of multi-modal 3D methods over past three years, especially those integrating multi-camera images (3D+2D) and textual descriptions (3D+language), a comprehensive and in-depth review is notably absent. In this article, we present a systematic survey of recent progress to bridge this gap. We begin by briefly introducing a background that formally defines various 3D multi-modal tasks and summarizes their inherent challenges. After that, we present a novel taxonomy that delivers a thorough categorization of existing methods according to modalities and tasks, exploring their respective strengths and limitations. Furthermore, comparative results of recent approaches on several benchmark datasets, together with insightful analysis, are offered. Finally, we discuss the unresolved issues and provide several potential avenues for future research.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.