Linear temporal logic (LTL) is a specification language for finite sequences (called traces) widely used in program verification, motion planning in robotics, process mining, and many other areas. We consider the problem of learning LTL formulas for classifying traces; despite a growing interest of the research community, existing solutions suffer from two limitations: they do not scale beyond small formulas, and they may exhaust computational resources without returning any result. We introduce a new algorithm addressing both issues: our algorithm is able to construct formulas an order of magnitude larger than previous methods, and it is anytime, meaning that it in most cases successfully outputs a formula, albeit possibly not of minimal size. We evaluate the performances of our algorithm using an open source implementation against publicly available benchmarks.
We investigate online convex optimization in non-stationary environments and choose the \emph{dynamic regret} as the performance measure, defined as the difference between cumulative loss incurred by the online algorithm and that of any feasible comparator sequence. Let $T$ be the time horizon and $P_T$ be the path-length that essentially reflects the non-stationarity of environments, the state-of-the-art dynamic regret is $\mathcal{O}(\sqrt{T(1+P_T)})$. Although this bound is proved to be minimax optimal for convex functions, in this paper, we demonstrate that it is possible to further enhance the guarantee for some easy problem instances, particularly when online functions are smooth. Specifically, we propose novel online algorithms that can leverage smoothness and replace the dependence on $T$ in the dynamic regret by \emph{problem-dependent} quantities: the variation in gradients of loss functions, the cumulative loss of the comparator sequence, and the minimum of the previous two terms. These quantities are at most $\mathcal{O}(T)$ while could be much smaller in benign environments. Therefore, our results are adaptive to the intrinsic difficulty of the problem, since the bounds are tighter than existing results for easy problems and meanwhile guarantee the same rate in the worst case. Notably, our algorithm requires only \emph{one} gradient per iteration, which shares the same gradient query complexity with the methods developed for optimizing the static regret. As a further application, we extend the results from the full-information setting to bandit convex optimization with two-point feedback and thereby attain the first problem-dependent dynamic regret for such bandit tasks.
Real-time and human-interpretable decision-making in cyber-physical systems is a significant but challenging task, which usually requires predictions of possible future events from limited data. In this paper, we introduce a time-incremental learning framework: given a dataset of labeled signal traces with a common time horizon, we propose a method to predict the label of a signal that is received incrementally over time, referred to as prefix signal. Prefix signals are the signals that are being observed as they are generated, and their time length is shorter than the common horizon of signals. We present a novel decision-tree based approach to generate a finite number of Signal Temporal Logic (STL) specifications from the given dataset, and construct a predictor based on them. Each STL specification, as a binary classifier of time-series data, captures the temporal properties of the dataset over time. The predictor is constructed by assigning time-variant weights to the STL formulas. The weights are learned by using neural networks, with the goal of minimizing the misclassification rate for the prefix signals defined over the given dataset. The learned predictor is used to predict the label of a prefix signal, by computing the weighted sum of the robustness of the prefix signal with respect to each STL formula. The effectiveness and classification performance of our algorithm are evaluated on an urban-driving and a naval-surveillance case studies.
Logistic regression is a widely used statistical model to describe the relationship between a binary response variable and predictor variables in data sets. It is often used in machine learning to identify important predictor variables. This task, variable selection, typically amounts to fitting a logistic regression model regularized by a convex combination of $\ell_1$ and $\ell_{2}^{2}$ penalties. Since modern big data sets can contain hundreds of thousands to billions of predictor variables, variable selection methods depend on efficient and robust optimization algorithms to perform well. State-of-the-art algorithms for variable selection, however, were not traditionally designed to handle big data sets; they either scale poorly in size or are prone to produce unreliable numerical results. It therefore remains challenging to perform variable selection on big data sets without access to adequate and costly computational resources. In this paper, we propose a nonlinear primal-dual algorithm that addresses these shortcomings. Specifically, we propose an iterative algorithm that provably computes a solution to a logistic regression problem regularized by an elastic net penalty in $O(T(m,n)\log(1/\epsilon))$ operations, where $\epsilon \in (0,1)$ denotes the tolerance and $T(m,n)$ denotes the number of arithmetic operations required to perform matrix-vector multiplication on a data set with $m$ samples each comprising $n$ features. This result improves on the known complexity bound of $O(\min(m^2n,mn^2)\log(1/\epsilon))$ for first-order optimization methods such as the classic primal-dual hybrid gradient or forward-backward splitting methods.
We consider large-scale Markov decision processes with an unknown cost function and address the problem of learning a policy from a finite set of expert demonstrations. We assume that the learner is not allowed to interact with the expert and has no access to reinforcement signal of any kind. Existing inverse reinforcement learning methods come with strong theoretical guarantees, but are computationally expensive, while state-of-the-art policy optimization algorithms achieve significant empirical success, but are hampered by limited theoretical understanding. To bridge the gap between theory and practice, we introduce a novel bilinear saddle-point framework using Lagrangian duality. The proposed primal-dual viewpoint allows us to develop a model-free provably efficient algorithm through the lens of stochastic convex optimization. The method enjoys the advantages of simplicity of implementation, low memory requirements, and computational and sample complexities independent of the number of states. We further present an equivalent no-regret online-learning interpretation.
With growing deployment of Internet of Things (IoT) and machine learning (ML) applications, which need to leverage computation on edge and cloud resources, it is important to develop algorithms and tools to place these distributed computations to optimize their performance. We address the problem of optimally placing computations (described as directed acyclic graphs (DAGs)) on a set of machines to maximize the steady-state throughput for pipelined inputs. Traditionally, such optimization has focused on a different metric, minimizing single-shot makespan, and a well-known algorithm is the Heterogeneous Earliest Finish Time (HEFT) algorithm. Maximizing throughput however, is more suitable for many real-time, edge, cloud and IoT applications, we present a different scheduling algorithm, namely Throughput HEFT (TPHEFT). Further, we present two throughput-oriented enhancements which can be applied to any baseline schedule, that we refer to as "node splitting" (SPLIT) and "task duplication" (DUP). In order to implement and evaluate these algorithms, we built new subsystems and plugins for an open-source dispersed computing framework called Jupiter. Experiments with varying DAG structures indicate that: 1) TPHEFT can significantly improve throughput performance compared to HEFT (up to 2.3 times in our experiments), with greater gains when there is less degree of parallelism in the DAG, 2) Node splitting can potentially improve performance over a baseline schedule, with greater gains when there's an imbalanced allocation of computation or inter-task communication, and 3) Task duplication generally gives improvements only when running upon a baseline that places communication over slow links. To our knowledge, this is the first study to present a systematic experimental implementation and exploration of throughput-enhancing techniques for dispersed computing on real testbeds.
The difficulty in specifying rewards for many real-world problems has led to an increased focus on learning rewards from human feedback, such as demonstrations. However, there are often many different reward functions that explain the human feedback, leaving agents with uncertainty over what the true reward function is. While most policy optimization approaches handle this uncertainty by optimizing for expected performance, many applications demand risk-averse behavior. We derive a novel policy gradient-style robust optimization approach, PG-BROIL, that optimizes a soft-robust objective that balances expected performance and risk. To the best of our knowledge, PG-BROIL is the first policy optimization algorithm robust to a distribution of reward hypotheses which can scale to continuous MDPs. Results suggest that PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse and outperforms state-of-the-art imitation learning algorithms when learning from ambiguous demonstrations by hedging against uncertainty, rather than seeking to uniquely identify the demonstrator's reward function.
We address the issue of tuning hyperparameters (HPs) for imitation learning algorithms in the context of continuous-control, when the underlying reward function of the demonstrating expert cannot be observed at any time. The vast literature in imitation learning mostly considers this reward function to be available for HP selection, but this is not a realistic setting. Indeed, would this reward function be available, it could then directly be used for policy training and imitation would not be necessary. To tackle this mostly ignored problem, we propose a number of possible proxies to the external reward. We evaluate them in an extensive empirical study (more than 10'000 agents across 9 environments) and make practical recommendations for selecting HPs. Our results show that while imitation learning algorithms are sensitive to HP choices, it is often possible to select good enough HPs through a proxy to the reward function.
Methods proposed in the literature towards continual deep learning typically operate in a task-based sequential learning setup. A sequence of tasks is learned, one at a time, with all data of current task available but not of previous or future tasks. Task boundaries and identities are known at all times. This setup, however, is rarely encountered in practical applications. Therefore we investigate how to transform continual learning to an online setup. We develop a system that keeps on learning over time in a streaming fashion, with data distributions gradually changing and without the notion of separate tasks. To this end, we build on the work on Memory Aware Synapses, and show how this method can be made online by providing a protocol to decide i) when to update the importance weights, ii) which data to use to update them, and iii) how to accumulate the importance weights at each update step. Experimental results show the validity of the approach in the context of two applications: (self-)supervised learning of a face recognition model by watching soap series and learning a robot to avoid collisions.
This paper addresses the problem of formally verifying desirable properties of neural networks, i.e., obtaining provable guarantees that neural networks satisfy specifications relating their inputs and outputs (robustness to bounded norm adversarial perturbations, for example). Most previous work on this topic was limited in its applicability by the size of the network, network architecture and the complexity of properties to be verified. In contrast, our framework applies to a general class of activation functions and specifications on neural network inputs and outputs. We formulate verification as an optimization problem (seeking to find the largest violation of the specification) and solve a Lagrangian relaxation of the optimization problem to obtain an upper bound on the worst case violation of the specification being verified. Our approach is anytime i.e. it can be stopped at any time and a valid bound on the maximum violation can be obtained. We develop specialized verification algorithms with provable tightness guarantees under special assumptions and demonstrate the practical significance of our general verification approach on a variety of verification tasks.
Many problems in areas as diverse as recommendation systems, social network analysis, semantic search, and distributed root cause analysis can be modeled as pattern search on labeled graphs (also called "heterogeneous information networks" or HINs). Given a large graph and a query pattern with node and edge label constraints, a fundamental challenge is to nd the top-k matches ac- cording to a ranking function over edge and node weights. For users, it is di cult to select value k . We therefore propose the novel notion of an any-k ranking algorithm: for a given time budget, re- turn as many of the top-ranked results as possible. Then, given additional time, produce the next lower-ranked results quickly as well. It can be stopped anytime, but may have to continues until all results are returned. This paper focuses on acyclic patterns over arbitrary labeled graphs. We are interested in practical algorithms that effectively exploit (1) properties of heterogeneous networks, in particular selective constraints on labels, and (2) that the users often explore only a fraction of the top-ranked results. Our solution, KARPET, carefully integrates aggressive pruning that leverages the acyclic nature of the query, and incremental guided search. It enables us to prove strong non-trivial time and space guarantees, which is generally considered very hard for this type of graph search problem. Through experimental studies we show that KARPET achieves running times in the order of milliseconds for tree patterns on large networks with millions of nodes and edges.