Assessing the critical view of safety in laparoscopic cholecystectomy requires accurate identification and localization of key anatomical structures, reasoning about their geometric relationships to one another, and determining the quality of their exposure. Prior works have approached this task by including semantic segmentation as an intermediate step, using predicted segmentation masks to then predict the CVS. While these methods are effective, they rely on extremely expensive ground-truth segmentation annotations and tend to fail when the predicted segmentation is incorrect, limiting generalization. In this work, we propose a method for CVS prediction wherein we first represent a surgical image using a disentangled latent scene graph, then process this representation using a graph neural network. Our graph representations explicitly encode semantic information - object location, class information, geometric relations - to improve anatomy-driven reasoning, as well as visual features to retain differentiability and thereby provide robustness to semantic errors. Finally, to address annotation cost, we propose to train our method using only bounding box annotations, incorporating an auxiliary image reconstruction objective to learn fine-grained object boundaries. We show that our method not only outperforms several baseline methods when trained with bounding box annotations, but also scales effectively when trained with segmentation masks, maintaining state-of-the-art performance.
Many segmentation networks have been proposed for 3D volumetric segmentation of tumors and organs at risk. Hospitals and clinical institutions seek to accelerate and minimize the efforts of specialists in image segmentation. Still, in case of errors generated by these networks, clinicians would have to manually edit the generated segmentation maps. Given a 3D volume and its putative segmentation map, we propose an approach to identify and measure erroneous regions in the segmentation map. Our method can estimate error at any point or node in a 3D mesh generated from a possibly erroneous volumetric segmentation map, serving as a Quality Assurance tool. We propose a graph neural network-based transformer based on the Nodeformer architecture to measure and classify the segmentation errors at any point. We have evaluated our network on a high-resolution micro-CT dataset of the human inner-ear bony labyrinth structure by simulating erroneous 3D segmentation maps. Our network incorporates a convolutional encoder to compute node-centric features from the input micro-CT data, the Nodeformer to learn the latent graph embeddings, and a Multi-Layer Perceptron (MLP) to compute and classify the node-wise errors. Our network achieves a mean absolute error of ~0.042 over other Graph Neural Networks (GNN) and an accuracy of 79.53% over other GNNs in estimating and classifying the node-wise errors, respectively. We also put forth vertex-normal prediction as a custom pretext task for pre-training the CNN encoder to improve the network's overall performance. Qualitative analysis shows the efficiency of our network in correctly classifying errors and reducing misclassifications.
Novel view synthesis and 3D modeling using implicit neural field representation are shown to be very effective for calibrated multi-view cameras. Such representations are known to benefit from additional geometric and semantic supervision. Most existing methods that exploit additional supervision require dense pixel-wise labels or localized scene priors. These methods cannot benefit from high-level vague scene priors provided in terms of scenes' descriptions. In this work, we aim to leverage the geometric prior of Manhattan scenes to improve the implicit neural radiance field representations. More precisely, we assume that only the knowledge of the indoor scene (under investigation) being Manhattan is known -- with no additional information whatsoever -- with an unknown Manhattan coordinate frame. Such high-level prior is used to self-supervise the surface normals derived explicitly in the implicit neural fields. Our modeling allows us to cluster the derived normals and exploit their orthogonality constraints for self-supervision. Our exhaustive experiments on datasets of diverse indoor scenes demonstrate the significant benefit of the proposed method over the established baselines. The source code will be available at //github.com/nikola3794/normal-clustering-nerf.
Heart failure is a debilitating condition that affects millions of people worldwide and has a significant impact on their quality of life and mortality rates. An objective assessment of cardiac pressures remains an important method for the diagnosis and treatment prognostication for patients with heart failure. Although cardiac catheterization is the gold standard for estimating central hemodynamic pressures, it is an invasive procedure that carries inherent risks, making it a potentially dangerous procedure for some patients. Approaches that leverage non-invasive signals - such as electrocardiogram (ECG) - have the promise to make the routine estimation of cardiac pressures feasible in both inpatient and outpatient settings. Prior models trained to estimate intracardiac pressures (e.g., mean pulmonary capillary wedge pressure (mPCWP)) in a supervised fashion have shown good discriminatory ability but have been limited to the labeled dataset from the heart failure cohort. To address this issue and build a robust representation, we apply deep metric learning (DML) and propose a novel self-supervised DML with distance-based mining that improves the performance of a model with limited labels. We use a dataset that contains over 5.4 million ECGs without concomitant central pressure labels to pre-train a self-supervised DML model which showed improved classification of elevated mPCWP compared to self-supervised contrastive baselines. Additionally, the supervised DML model that is using ECGs with access to 8,172 mPCWP labels demonstrated significantly better performance on the mPCWP regression task compared to the supervised baseline. Moreover, our data suggest that DML yields models that are performant across patient subgroups, even when some patient subgroups are under-represented in the dataset. Our code is available at //github.com/mandiehyewon/ssldml
The analysis of public affairs documents is crucial for citizens as it promotes transparency, accountability, and informed decision-making. It allows citizens to understand government policies, participate in public discourse, and hold representatives accountable. This is crucial, and sometimes a matter of life or death, for companies whose operation depend on certain regulations. Large Language Models (LLMs) have the potential to greatly enhance the analysis of public affairs documents by effectively processing and understanding the complex language used in such documents. In this work, we analyze the performance of LLMs in classifying public affairs documents. As a natural multi-label task, the classification of these documents presents important challenges. In this work, we use a regex-powered tool to collect a database of public affairs documents with more than 33K samples and 22.5M tokens. Our experiments assess the performance of 4 different Spanish LLMs to classify up to 30 different topics in the data in different configurations. The results shows that LLMs can be of great use to process domain-specific documents, such as those in the domain of public affairs.
Failure detection (FD) in AI systems is a crucial safeguard for the deployment for safety-critical tasks. The common evaluation method of FD performance is the Risk-coverage (RC) curve, which reveals the trade-off between the data coverage rate and the performance on accepted data. One common way to quantify the RC curve by calculating the area under the RC curve. However, this metric does not inform on how suited any method is for FD, or what the optimal coverage rate should be. As FD aims to achieve higher performance with fewer data discarded, evaluating with partial coverage excluding the most uncertain samples is more intuitive and meaningful than full coverage. In addition, there is an optimal point in the coverage where the model could achieve ideal performance theoretically. We propose the Excess Area Under the Optimal RC Curve (E-AUoptRC), with the area in coverage from the optimal point to the full coverage. Further, the model performance at this optimal point can represent both model learning ability and calibration. We propose it as the Trust Index (TI), a complementary evaluation metric to the overall model accuracy. We report extensive experiments on three benchmark image datasets with ten variants of transformer and CNN models. Our results show that our proposed methods can better reflect the model trustworthiness than existing evaluation metrics. We further observe that the model with high overall accuracy does not always yield the high TI, which indicates the necessity of the proposed Trust Index as a complementary metric to the model overall accuracy. The code are available at \url{//github.com/AoShuang92/optimal_risk}.
The vast increase of Internet of Things (IoT) technologies and the ever-evolving attack vectors have increased cyber-security risks dramatically. A common approach to implementing AI-based Intrusion Detection systems (IDSs) in distributed IoT systems is in a centralised manner. However, this approach may violate data privacy and prohibit IDS scalability. Therefore, intrusion detection solutions in IoT ecosystems need to move towards a decentralised direction. Federated Learning (FL) has attracted significant interest in recent years due to its ability to perform collaborative learning while preserving data confidentiality and locality. Nevertheless, most FL-based IDS for IoT systems are designed under unrealistic data distribution conditions. To that end, we design an experiment representative of the real world and evaluate the performance of an FL-based IDS. For our experiments, we rely on TON-IoT, a realistic IoT network traffic dataset, associating each IP address with a single FL client. Additionally, we explore pre-training and investigate various aggregation methods to mitigate the impact of data heterogeneity. Lastly, we benchmark our approach against a centralised solution. The comparison shows that the heterogeneous nature of the data has a considerable negative impact on the model's performance when trained in a distributed manner. However, in the case of a pre-trained initial global FL model, we demonstrate a performance improvement of over 20% (F1-score) compared to a randomly initiated global model.
Traffic signals play an important role in transportation by enabling traffic flow management, and ensuring safety at intersections. In addition, knowing the traffic signal phase and timing data can allow optimal vehicle routing for time and energy efficiency, eco-driving, and the accurate simulation of signalized road networks. In this paper, we present a machine learning (ML) method for estimating traffic signal timing information from vehicle probe data. To the authors best knowledge, very few works have presented ML techniques for determining traffic signal timing parameters from vehicle probe data. In this work, we develop an Extreme Gradient Boosting (XGBoost) model to estimate signal cycle lengths and a neural network model to determine the corresponding red times per phase from probe data. The green times are then be derived from the cycle length and red times. Our results show an error of less than 0.56 sec for cycle length, and red times predictions within 7.2 sec error on average.
Automated synthesis of provably correct controllers for cyber-physical systems is crucial for deployment in safety-critical scenarios. However, hybrid features and stochastic or unknown behaviours make this problem challenging. We propose a method for synthesising controllers for Markov jump linear systems (MJLSs), a class of discrete-time models for cyber-physical systems, so that they certifiably satisfy probabilistic computation tree logic (PCTL) formulae. An MJLS consists of a finite set of stochastic linear dynamics and discrete jumps between these dynamics that are governed by a Markov decision process (MDP). We consider the cases where the transition probabilities of this MDP are either known up to an interval or completely unknown. Our approach is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS. We formalise this abstraction as an interval MDP (iMDP) for which we compute intervals of transition probabilities using sampling techniques from the so-called 'scenario approach', resulting in a probabilistically sound approximation. We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
Deep reinforcement learning algorithms (DRL) are increasingly being used in safety-critical systems. Ensuring the safety of DRL agents is a critical concern in such contexts. However, relying solely on testing is not sufficient to ensure safety as it does not offer guarantees. Building safety monitors is one solution to alleviate this challenge. This paper proposes SMARLA, a machine learning-based safety monitoring approach designed for DRL agents. For practical reasons, SMARLA is designed to be black-box (as it does not require access to the internals of the agent) and leverages state abstraction to reduce the state space and thus facilitate the learning of safety violation prediction models from agent's states. We validated SMARLA on two well-known RL case studies. Empirical analysis reveals that SMARLA achieves accurate violation prediction with a low false positive rate, and can predict safety violations at an early stage, approximately halfway through the agent's execution before violations occur.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.