亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Lifted codes are a class of evaluation codes attracting more attention due to good locality and intermediate availability. In this work we introduce and study quadratic-curve-lifted Reed-Solomon (QC-LRS) codes, where the codeword symbols whose coordinates are on a quadratic curve form a codeword of a Reed-Solomon code. We first develop a necessary and sufficient condition on the monomials which form a basis the code. Based on the condition, we give upper and lower bounds on the dimension and show that the asymptotic rate of a QC-LRS code over $\mathbb{F}_q$ with local redundancy $r$ is $1-\Theta(q/r)^{-0.2284}$. Moreover, we provide analytical results on the minimum distance of this class of codes and compare QC-LRS codes with lifted Reed-Solomon codes by simulations in terms of the local recovery capability against erasures. For short lengths, QC-LRS codes have better performance in local recovery for erasures than LRS codes of the same dimension.

相關內容

By defining two important terms called basic perturbation vectors and obtaining their linear bounds, we obtain the linear componentwise perturbation bounds for unitary factors and upper triangular factors of the generalized Schur decomposition. The perturbation bounds for the diagonal elements of the upper triangular factors and the generalized invariant subspace are also derived. From the former, we present an upper bound and a condition number of the generalized eigenvalue. Furthermore, with numerical iterative method, the nonlinear componentwise perturbation bounds of the generalized Schur decomposition are also provided. Numerical examples are given to test the obtained bounds. Among them, we compare our upper bound and condition number of the generalized eigenvalue with their counterparts given in the literature. Numerical results show that they are very close to each other but our results don't contain the information on the left and right generalized eigenvectors.

The hard thresholding technique plays a vital role in the development of algorithms for sparse signal recovery. By merging this technique and heavy-ball acceleration method which is a multi-step extension of the traditional gradient descent method, we propose the so-called heavy-ball-based hard thresholding (HBHT) and heavy-ball-based hard thresholding pursuit (HBHTP) algorithms for signal recovery. It turns out that the HBHT and HBHTP can successfully recover a $k$-sparse signal if the restricted isometry constant of the measurement matrix satisfies $\delta_{3k}<0.618 $ and $\delta_{3k}<0.577,$ respectively. The guaranteed success of HBHT and HBHTP is also shown under the conditions $\delta_{2k}<0.356$ and $\delta_{2k}<0.377,$ respectively. Moreover, the finite convergence and stability of the two algorithms are also established in this paper. Simulations on random problem instances are performed to compare the performance of the proposed algorithms and several existing ones. Empirical results indicate that the HBHTP performs very comparably to a few existing algorithms and it takes less average time to achieve the signal recovery than these existing methods.

We introduce a new distortion measure for point processes called functional-covering distortion. It is inspired by intensity theory and is related to both the covering of point processes and logarithmic loss distortion. We obtain the distortion-rate function with feedforward under this distortion measure for a large class of point processes. For Poisson processes, the rate-distortion function is obtained under a general condition called constrained functional-covering distortion, of which both covering and functional-covering are special cases. Also for Poisson processes, we characterize the rate-distortion region for a two-encoder CEO problem and show that feedforward does not enlarge this region.

Certain simplicial complexes are used to construct a subset $D$ of $\mathbb{F}_{2^n}^m$ and $D$, in turn, defines the linear code $C_{D}$ over $\mathbb{F}_{2^n}$ that consists of $(v\cdot d)_{d\in D}$ for $v\in \mathbb{F}_{2^n}^m$. Here we deal with the case $n=3$, that is, when $C_{D}$ is an octanary code. We establish a relation between $C_{D}$ and its binary subfield code $C_{D}^{(2)}$ with the help of a generator matrix. For a given length and dimension, a code is called distance optimal if it has the highest possible distance. With respect to the Griesmer bound, five infinite families of distance optimal codes are obtained, and sufficient conditions for certain linear codes to be minimal are established.

Maximal Independent Set (MIS) is one of the central and most well-studied problems in distributed computing. Even after four decades of intensive research, the best-known (randomized) MIS algorithms take $O(\log{n})$ worst-case rounds on general graphs (where $n$ is the number of nodes), while the best-known lower bound is $\Omega\left(\sqrt{\frac{\log{n}}{\log{\log{n}}}}\right)$ rounds. Breaking past the $O(\log{n})$ worst-case bound or showing stronger lower bounds have been longstanding open problems. Our main contribution is that we show that MIS can be computed in (worst-case) awake complexity of $O(\log \log n)$ rounds that is (essentially) exponentially better compared to the (traditional) round complexity lower bound of $\Omega\left(\sqrt{\frac{\log{n}}{\log{\log{n}}}}\right)$. Specifically, we present the following results. (1) We present a randomized distributed (Monte Carlo) algorithm for MIS that with high probability computes an MIS and has $O(\log\log{n})$-rounds awake complexity. This algorithm has (traditional) {\em round complexity} that is $O(poly(n))$. Our bounds hold in the $CONGEST(O(polylog n))$ model where only $O(polylog n)$ (specifically $O(\log^3 n)$) bits are allowed to be sent per edge per round. (2) We also show that we can drastically reduce the round complexity at the cost of a slight increase in awake complexity by presenting a randomized MIS algorithm with $O(\log \log n \log^* n )$ awake complexity and $O(\log^3 n \log \log n \log^*n)$ round complexity in the $CONGEST(O(polylog n))$ model.

In the interdependent values (IDV) model introduced by Milgrom and Weber [1982], agents have private signals that capture their information about different social alternatives, and the valuation of every agent is a function of all agent signals. While interdependence has been mainly studied for auctions, it is extremely relevant for a large variety of social choice settings, including the canonical setting of public projects. The IDV model is very challenging relative to standard independent private values, and welfare guarantees have been achieved through two alternative conditions known as {\em single-crossing} and {\em submodularity over signals (SOS)}. In either case, the existing theory falls short of solving the public projects setting. Our contribution is twofold: (i) We give a workable characterization of truthfulness for IDV public projects for the largest class of valuations for which such a characterization exists, and term this class \emph{decomposable valuations}; (ii) We provide possibility and impossibility results for welfare approximation in public projects with SOS valuations. Our main impossibility result is that, in contrast to auctions, no universally truthful mechanism performs better for public projects with SOS valuations than choosing a project at random. Our main positive result applies to {\em excludable} public projects with SOS, for which we establish a constant factor approximation similar to auctions. Our results suggest that exclusion may be a key tool for achieving welfare guarantees in the IDV model.

Datasets that capture the connection between vision, language, and affection are limited, causing a lack of understanding of the emotional aspect of human intelligence. As a step in this direction, the ArtEmis dataset was recently introduced as a large-scale dataset of emotional reactions to images along with language explanations of these chosen emotions. We observed a significant emotional bias towards instance-rich emotions, making trained neural speakers less accurate in describing under-represented emotions. We show that collecting new data, in the same way, is not effective in mitigating this emotional bias. To remedy this problem, we propose a contrastive data collection approach to balance ArtEmis with a new complementary dataset such that a pair of similar images have contrasting emotions (one positive and one negative). We collected 260,533 instances using the proposed method, we combine them with ArtEmis, creating a second iteration of the dataset. The new combined dataset, dubbed ArtEmis v2.0, has a balanced distribution of emotions with explanations revealing more fine details in the associated painting. Our experiments show that neural speakers trained on the new dataset improve CIDEr and METEOR evaluation metrics by 20% and 7%, respectively, compared to the biased dataset. Finally, we also show that the performance per emotion of neural speakers is improved across all the emotion categories, significantly on under-represented emotions. The collected dataset and code are available at //artemisdataset-v2.org.

The numerical solution of singular eigenvalue problems is complicated by the fact that small perturbations of the coefficients may have an arbitrarily bad effect on eigenvalue accuracy. However, it has been known for a long time that such perturbations are exceptional and standard eigenvalue solvers, such as the QZ algorithm, tend to yield good accuracy despite the inevitable presence of roundoff error. Recently, Lotz and Noferini quantified this phenomenon by introducing the concept of $\delta$-weak eigenvalue condition numbers. In this work, we consider singular quadratic eigenvalue problems and two popular linearizations. Our results show that a correctly chosen linearization increases $\delta$-weak eigenvalue condition numbers only marginally, justifying the use of these linearizations in numerical solvers also in the singular case. We propose a very simple but often effective algorithm for computing well-conditioned eigenvalues of a singular quadratic eigenvalue problems by adding small random perturbations to the coefficients. We prove that the eigenvalue condition number is, with high probability, a reliable criterion for detecting and excluding spurious eigenvalues created from the singular part.

Universal coding of integers~(UCI) is a class of variable-length code, such that the ratio of the expected codeword length to $\max\{1,H(P)\}$ is within a constant factor, where $H(P)$ is the Shannon entropy of the decreasing probability distribution $P$. However, if we consider the ratio of the expected codeword length to $H(P)$, the ratio tends to infinity by using UCI, when $H(P)$ tends to zero. To solve this issue, this paper introduces a class of codes, termed generalized universal coding of integers~(GUCI), such that the ratio of the expected codeword length to $H(P)$ is within a constant factor $K$. First, the definition of GUCI is proposed and the coding structure of GUCI is introduced. Next, we propose a class of GUCI $\mathcal{C}$ to achieve the expansion factor $K_{\mathcal{C}}=2$ and show that the optimal GUCI is in the range $1\leq K_{\mathcal{C}}^{*}\leq 2$. Then, by comparing UCI and GUCI, we show that when the entropy is very large or $P(0)$ is not large, there are also cases where the average codeword length of GUCI is shorter. Finally, the asymptotically optimal GUCI is presented.

We present a pipelined multiplier with reduced activities and minimized interconnect based on online digit-serial arithmetic. The working precision has been truncated such that $p<n$ bits are used to compute $n$ bits product, resulting in significant savings in area and power. The digit slices follow variable precision according to input, increasing upto $p$ and then decreases according to the error profile. Pipelining has been done to achieve high throughput and low latency which is desirable for compute intensive inner products. Synthesis results of the proposed designs have been presented and compared with the non-pipelined online multiplier, pipelined online multiplier with full working precision and conventional serial-parallel and array multipliers. For $8, 16, 24$ and $32$ bit precision, the proposed low power pipelined design show upto $38\%$ and $44\%$ reduction in power and area respectively compared to the pipelined online multiplier without working precision truncation.

北京阿比特科技有限公司