亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Spatial confounding is a fundamental issue in regression models for spatially indexed data. It arises because spatial random effects, included to approximate unmeasured spatial variation, are typically not independent of the covariates in the model. This can lead to significant bias in covariate effect estimates. Despite extensive research, it is still a topic of much confusion with sometimes puzzling and seemingly contradictory results. In this paper we develop a broad theoretical framework that brings mathematical clarity to the mechanisms of spatial confounding, providing explicit and interpretable analytical expressions for the resulting bias. From these, we see that it is a problem directly linked to spatial smoothing, and we can identify exactly how the features of the model and the data generation process affect the size and occurrence of bias. We also use our framework to understand and generalise some of the main results on spatial confounding in the past, including suggested methods for bias adjustment. Thus, our comprehensive and mathematically explicit approach clears up existing confusion and, indeed, demystifies the issue of spatial confounding.

相關內容

Quantum error-correcting codes are crucial for quantum computing and communication. Currently, these codes are mainly categorized into additive, non-additive, and surface codes. Additive and non-additive codes utilize one or more invariant subspaces of the stabilizer G to construct quantum codes. Therefore, the selection of these invariant subspaces is a key issue. In this paper, we propose a solution to this problem by introducing quotient space codes and a construction method for quotient space quantum codes. This new framework unifies additive and non-additive quantum codes. We demonstrate the codeword stabilizer codes as a special case within this framework and supplement its error-correction distance. Furthermore, we provide a simple proof of the Singleton bound for this quantum code by establishing the code bound of quotient space codes and discuss the code bounds for pure and impure codes. The quotient space approach offers a concise and clear mathematical form for the study of quantum codes.

Navigation is a must-have skill for any mobile robot. A core challenge in navigation is the need to account for an ample number of possible configurations of environment and navigation contexts. We claim that a mobile robot should be able to explain its navigational choices making its decisions understandable to humans. In this paper, we briefly present our approach to explaining navigational decisions of a robot through visual and textual explanations. We propose a user study to test the understandability and simplicity of the robot explanations and outline our further research agenda.

We present the framework of slowly varying regression under sparsity, allowing sparse regression models to exhibit slow and sparse variations. The problem of parameter estimation is formulated as a mixed-integer optimization problem. We demonstrate that it can be precisely reformulated as a binary convex optimization problem through a novel relaxation technique. This relaxation involves a new equality on Moore-Penrose inverses, convexifying the non-convex objective function while matching the original objective on all feasible binary points. This enables us to efficiently solve the problem to provable optimality using a cutting plane-type algorithm. We develop a highly optimized implementation of this algorithm, substantially improving upon the asymptotic computational complexity of a straightforward implementation. Additionally, we propose a fast heuristic method that guarantees a feasible solution and, as empirically illustrated, produces high-quality warm-start solutions for the binary optimization problem. To tune the framework's hyperparameters, we suggest a practical procedure relying on binary search that, under certain assumptions, is guaranteed to recover the true model parameters. On both synthetic and real-world datasets, we demonstrate that the resulting algorithm outperforms competing formulations in comparable times across various metrics, including estimation accuracy, predictive power, and computational time. The algorithm is highly scalable, allowing us to train models with thousands of parameters. Our implementation is available open-source at //github.com/vvdigalakis/SSVRegression.git.

Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.

Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

As a field of AI, Machine Reasoning (MR) uses largely symbolic means to formalize and emulate abstract reasoning. Studies in early MR have notably started inquiries into Explainable AI (XAI) -- arguably one of the biggest concerns today for the AI community. Work on explainable MR as well as on MR approaches to explainability in other areas of AI has continued ever since. It is especially potent in modern MR branches, such as argumentation, constraint and logic programming, planning. We hereby aim to provide a selective overview of MR explainability techniques and studies in hopes that insights from this long track of research will complement well the current XAI landscape. This document reports our work in-progress on MR explainability.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.

Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司