In this paper we continue the work on implicit-explicit (IMEX) time discretizations for the incompressible Oseen equations that we started in \cite{BGG23} (E. Burman, D. Garg, J. Guzm\`an, {\emph{Implicit-explicit time discretization for Oseen's equation at high Reynolds number with application to fractional step methods}}, SIAM J. Numer. Anal., 61, 2859--2886, 2023). The pressure velocity coupling and the viscous terms are treated implicitly, while the convection term is treated explicitly using extrapolation. Herein we focus on the implicit-explicit Crank-Nicolson method for time discretization. For the discretization in space we consider finite element methods with stabilization on the gradient jumps. The stabilizing terms ensures inf-sup stability for equal order interpolation and robustness at high Reynolds number. Under suitable Courant conditions we prove stability of the implicit-explicit Crank-Nicolson scheme in this regime. The stabilization allows us to prove error estimates of order $O(h^{k+\frac12} + \tau^2)$. Here $h$ is the mesh parameter, $k$ the polynomial order and $\tau$ the time step. Finally we discuss some fractional step methods that are implied by the IMEX scheme. Numerical examples are reported comparing the different methods when applied to the Navier-Stokes' equations.
Fitting's Heyting-valued logic and Heyting-valued modal logic have already been studied from an algebraic viewpoint. In addition to algebraic axiomatizations with the completeness of Fitting's Heyting-valued logic and Heyting-valued modal logic, both topological and coalgebraic dualities have also been developed for algebras of Fitting's Heyting-valued modal logic. Bitopological methods have recently been employed to investigate duality for Fitting's Heyting-valued logic. However, the concepts of bitopology and biVietoris coalgebras are conspicuously absent from the development of dualities for Fitting's many-valued modal logic. With this study, we try to bridge that gap. We develop a bitopological duality for algebras of Fitting's Heyting-valued modal logic. We construct a bi-Vietoris functor on the category $PBS_{\mathcal{L}}$ of $\mathcal{L}$-valued ($\mathcal{L}$ is a Heyting algebra) pairwise Boolean spaces. Finally, we obtain a dual equivalence between categories of biVietoris coalgebras and algebras of Fitting's Heyting-valued modal logic. As a result, we conclude that Fitting's many-valued modal logic is sound and complete with respect to the coalgebras of a biVietoris functor. We discuss the application of this coalgebraic approach to bitopological duality.
Neural operators such as the Fourier Neural Operator (FNO) have been shown to provide resolution-independent deep learning models that can learn mappings between function spaces. For example, an initial condition can be mapped to the solution of a partial differential equation (PDE) at a future time-step using a neural operator. Despite the popularity of neural operators, their use to predict solution functions over a domain given only data over the boundary (such as a spatially varying Dirichlet boundary condition) remains unexplored. In this paper, we refer to such problems as boundary-to-domain problems; they have a wide range of applications in areas such as fluid mechanics, solid mechanics, heat transfer etc. We present a novel FNO-based architecture, named Lifting Product FNO (or LP-FNO) which can map arbitrary boundary functions defined on the lower-dimensional boundary to a solution in the entire domain. Specifically, two FNOs defined on the lower-dimensional boundary are lifted into the higher dimensional domain using our proposed lifting product layer. We demonstrate the efficacy and resolution independence of the proposed LP-FNO for the 2D Poisson equation.
In this contribution we study the formal ability of a multi-resolution-times lattice Boltzmann scheme to approximate isothermal and thermal compressible Navier Stokes equations with a single particle distribution. More precisely, we consider a total of 12 classical square lattice Boltzmann schemes with prescribed sets of conserved and nonconserved moments. The question is to determine the algebraic expressions of the equilibrium functions for the nonconserved moments and the relaxation parameters associated to each scheme. We compare the fluid equations and the result of the Taylor expansion method at second order accuracy for bidimensional examples with a maximum of 17 velocities and three-dimensional schemes with at most 33 velocities. In some cases, it is not possible to fit exactly the physical model. For several examples, we adjust the Navier Stokes equations and propose nontrivial expressions for the equilibria.
The skew symmetric Laplace uniform distribution SSLUD({\mu}) is introduced in Lohot, R. K. and Dixit, V. U. (2024) using the skewing mechanism of Azzalini (1985). Here we derive the most powerful (MP) test for symmetry of the SSLUD({\mu}). Since the form of the test statistic is complicated and it is difficult to obtain its exact distribution, critical values and the power of MP test are obtained using simulation. Further, we construct a confidence interval (CI) for parameter {\mu} assuming asymptotic normality and empirical distribution of the maximum likelihood estimator of {\mu}. These two methods are compared based on the average length and coverage probability of the CI. Finally, the CI of the parameter {\mu} is constructed using data on the transformed daily percentage change in the price of NIFTY 50, an Indian stock market index given in Lohot, R. K. and Dixit, V. U. (2024).
The solution approximation for partial differential equations (PDEs) can be substantially improved using smooth basis functions. The recently introduced mollified basis functions are constructed through mollification, or convolution, of cell-wise defined piecewise polynomials with a smooth mollifier of certain characteristics. The properties of the mollified basis functions are governed by the order of the piecewise functions and the smoothness of the mollifier. In this work, we exploit the high-order and high-smoothness properties of the mollified basis functions for solving PDEs through the point collocation method. The basis functions are evaluated at a set of collocation points in the domain. In addition, boundary conditions are imposed at a set of boundary collocation points distributed over the domain boundaries. To ensure the stability of the resulting linear system of equations, the number of collocation points is set larger than the total number of basis functions. The resulting linear system is overdetermined and is solved using the least square technique. The presented numerical examples confirm the convergence of the proposed approximation scheme for Poisson, linear elasticity, and biharmonic problems. We study in particular the influence of the mollifier and the spatial distribution of the collocation points.
This paper establishes a mathematical foundation for the Adam optimizer, elucidating its connection to natural gradient descent through Riemannian and information geometry. We rigorously analyze the diagonal empirical Fisher information matrix (FIM) in Adam, clarifying all detailed approximations and advocating for the use of log probability functions as loss, which should be based on discrete distributions, due to the limitations of empirical FIM. Our analysis uncovers flaws in the original Adam algorithm, leading to proposed corrections such as enhanced momentum calculations, adjusted bias corrections, adaptive epsilon, and gradient clipping. We refine the weight decay term based on our theoretical framework. Our modified algorithm, Fisher Adam (FAdam), demonstrates superior performance across diverse domains including LLM, ASR, and VQ-VAE, achieving state-of-the-art results in ASR.
This note discusses a simple modification of cross-conformal prediction inspired by recent work on e-values. The precursor of conformal prediction developed in the 1990s by Gammerman, Vapnik, and Vovk was also based on e-values and is called conformal e-prediction in this note. Replacing e-values by p-values led to conformal prediction, which has important advantages over conformal e-prediction without obvious disadvantages. The situation with cross-conformal prediction is, however, different: whereas for cross-conformal prediction validity is only an empirical fact (and can be broken with excessive randomization), this note draws the reader's attention to the obvious fact that cross-conformal e-prediction enjoys a guaranteed property of validity.
This paper considers both the least squares and quasi-maximum likelihood estimation for the recently proposed scalable ARMA model, a parametric infinite-order vector AR model, and their asymptotic normality is also established. It makes feasible the inference on this computationally efficient model, especially for economic and financial time series. An efficient block coordinate descent algorithm is further introduced to search for estimates, and a Bayesian information criterion with selection consistency is suggested for model selection. Simulation experiments are conducted to illustrate their finite sample performance, and a real application on six macroeconomic indicators illustrates the usefulness of the proposed methodology.
We propose a variational symplectic numerical method for the time integration of dynamical systems issued from the least action principle. We assume a quadratic internal interpolation of the state between two time steps and we approximate the action in one time step by the Simpson's quadrature formula. The resulting scheme is nonlinear and symplectic. First numerical experiments concern a nonlinear pendulum and we have observed experimentally very good convergence properties.
This paper studies the influence of probabilism and non-determinism on some quantitative aspect X of the execution of a system modeled as a Markov decision process (MDP). To this end, the novel notion of demonic variance is introduced: For a random variable X in an MDP M, it is defined as 1/2 times the maximal expected squared distance of the values of X in two independent execution of M in which also the non-deterministic choices are resolved independently by two distinct schedulers. It is shown that the demonic variance is between 1 and 2 times as large as the maximal variance of X in M that can be achieved by a single scheduler. This allows defining a non-determinism score for M and X measuring how strongly the difference of X in two executions of M can be influenced by the non-deterministic choices. Properties of MDPs M with extremal values of the non-determinism score are established. Further, the algorithmic problems of computing the maximal variance and the demonic variance are investigated for two random variables, namely weighted reachability and accumulated rewards. In the process, also the structure of schedulers maximizing the variance and of scheduler pairs realizing the demonic variance is analyzed.