With the rapid growth of the machine learning applications, the workloads of future HPC systems are anticipated to be a mix of scientific simulation, big data analytics, and machine learning applications. Simulation is a great research vehicle to understand the performance implications of co-running scientific applications with big data and machine learning workloads on large-scale systems. In this paper, we present Union, a workload manager that provides an automatic framework to facilitate hybrid workload simulation in CODES. Furthermore, we use Union, along with CODES, to investigate various hybrid workloads composed of traditional simulation applications and emerging learning applications on two dragonfly systems. The experiment results show that both message latency and communication time are important performance metrics to evaluate network interference. Network interference on HPC applications is more reflected by the message latency variation, whereas ML application performance depends more on the communication time.
Large pre-trained models have had a significant impact on computer vision by enabling multi-modal learning, where the CLIP model has achieved impressive results in image classification, object detection, and semantic segmentation. However, the model's performance on 3D point cloud processing tasks is limited due to the domain gap between depth maps from 3D projection and training images of CLIP. This paper proposes DiffCLIP, a new pre-training framework that incorporates stable diffusion with ControlNet to minimize the domain gap in the visual branch. Additionally, a style-prompt generation module is introduced for few-shot tasks in the textual branch. Extensive experiments on the ModelNet10, ModelNet40, and ScanObjectNN datasets show that DiffCLIP has strong abilities for 3D understanding. By using stable diffusion and style-prompt generation, DiffCLIP achieves an accuracy of 43.2\% for zero-shot classification on OBJ\_BG of ScanObjectNN, which is state-of-the-art performance, and an accuracy of 80.6\% for zero-shot classification on ModelNet10, which is comparable to state-of-the-art performance.
Large Language Models (LLMs) have become integral to a wide spectrum of applications, ranging from traditional computing tasks to advanced artificial intelligence (AI) applications. This widespread adoption has spurred extensive research into LLMs across various disciplines, including the social sciences. Notably, studies have revealed that LLMs possess emotional intelligence, which can be further developed through positive emotional stimuli. This discovery raises an intriguing question: can negative emotions similarly influence LLMs, potentially enhancing their performance? In response to this question, we introduce NegativePrompt, a novel approach underpinned by psychological principles, involving ten specifically designed negative emotional stimuli. We embark on rigorous experimental evaluations of five LLMs including Flan-T5-Large, Vicuna, Llama 2, ChatGPT, and GPT-4, across a set of 45 tasks. The results are revealing: NegativePrompt markedly enhances the performance of LLMs, evidenced by relative improvements of 12.89% in Instruction Induction tasks and 46.25% in BIG-Bench tasks. Moreover, we conduct attention visualization experiments to decipher the underlying mechanisms of NegativePrompt's influence. Our research contributes significantly to the understanding of LLMs and emotion interaction, demonstrating the practical efficacy of NegativePrompt as an emotion-driven method and offering novel insights for the enhancement of LLMs in real-world applications. The code is available at //github.com/wangxu0820/NegativePrompt.
Autonomous robots for gathering information on objects of interest has numerous real-world applications because of they improve efficiency, performance and safety. Realizing autonomy demands online planning algorithms to solve sequential decision making problems under uncertainty; because, objects of interest are often dynamic, object state, such as location is not directly observable and are obtained from noisy measurements. Such planning problems are notoriously difficult due to the combinatorial nature of predicting the future to make optimal decisions. For information theoretic planning algorithms, we develop a computationally efficient and effective approximation for the difficult problem of predicting the likely sensor measurements from uncertain belief states}. The approach more accurately predicts information gain from information gathering actions. Our theoretical analysis proves the proposed formulation achieves a lower prediction error than the current efficient-method. We demonstrate improved performance gains in radio-source tracking and localization problems using extensive simulated and field experiments with a multirotor aerial robot.
The rapid proliferation of large language models and natural language processing (NLP) applications creates a crucial need for uncertainty quantification to mitigate risks such as hallucinations and to enhance decision-making reliability in critical applications. Conformal prediction is emerging as a theoretically sound and practically useful framework, combining flexibility with strong statistical guarantees. Its model-agnostic and distribution-free nature makes it particularly promising to address the current shortcomings of NLP systems that stem from the absence of uncertainty quantification. This paper provides a comprehensive survey of conformal prediction techniques, their guarantees, and existing applications in NLP, pointing to directions for future research and open challenges.
Recent advances in deep learning are driven by the growing scale of computation, data, and models. However, efficiently training large-scale models on distributed systems requires an intricate combination of data, operator, and pipeline parallelism, which exerts heavy burden on machine learning practitioners. To this end, we propose AutoDDL, a distributed training framework that automatically explores and exploits new parallelization schemes with near-optimal bandwidth cost. AutoDDL facilitates the description and implementation of different schemes by utilizing OneFlow's Split, Broadcast, and Partial Sum (SBP) abstraction. AutoDDL is equipped with an analytical performance model combined with a customized Coordinate Descent algorithm, which significantly reduces the scheme searching overhead. We conduct evaluations on Multi-Node-Single-GPU and Multi-Node-Multi-GPU machines using different models, including VGG and Transformer. Compared to the expert-optimized implementations, AutoDDL reduces the end-to-end training time by up to 31.1% and 10% for Transformer and up to 17.7% and 71.5% for VGG on the two parallel systems, respectively.
Deterministic and nondeterministic finite automata (DFAs and NFAs) are abstract models of computation commonly taught in introductory computing theory courses. These models have important applications (such as fast regular expression matching), and are used to introduce formal language theory. Undergraduate students often struggle with understanding these models at first, due to the level of abstraction. As a result, various pedagogical tools have been developed to allow students to practice with these models. We introduce the FSM Builder, a new pedagogical tool enabling students to practice constructing DFAs and NFAs with a graphical editor, giving personalized feedback and partial credit. The algorithms used for generating these are heavily inspired by previous works. The key advantages to its competitors are greater flexibility and scalability. This is because the FSM Builder is implemented using efficient algorithms from an open source package, allowing for easy extension and question creation. We discuss the implementation of the tool, how it stands out from previous tools, and takeaways from experiences of using the tool in multiple large courses. Survey results indicate the interface and feedback provided by the tool were useful to students.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.
Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{//github.com/IBM/EvolveGCN}.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.
This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.