亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Local interactions of uncoordinated individuals produce the collective behaviors of many biological systems, inspiring much of the current research in programmable matter. A striking example is the spontaneous assembly of fire ants into "bridges" comprising their own bodies to traverse obstacles and reach sources of food. Experiments and simulations suggest that, remarkably, these ants always form one bridge -- instead of multiple, competing bridges -- despite a lack of central coordination. We argue that the reliable formation of a single bridge does not require sophistication on behalf of the individuals by provably reproducing this behavior in a self-organizing particle system. We show that the formation of a single bridge by the particles is a statistical inevitability of their preferences to move in a particular direction, such as toward a food source, and their preference for more neighbors. Two parameters, $\eta$ and $\beta$, reflect the strengths of these preferences and determine the Gibbs stationary measure of the corresponding particle system's Markov chain dynamics. We show that a single bridge almost certainly forms when $\eta$ and $\beta$ are sufficiently large. Our proof introduces an auxiliary Markov chain, called an "occupancy chain," that captures only the significant, global changes to the system. Through the occupancy chain, we abstract away information about the motion of individual particles, but we gain a more direct means of analyzing their collective behavior. Such abstractions provide a promising new direction for understanding many other systems of programmable matter.

相關內容

The ability of large language models (LLMs) to transform, interpret, and comprehend vast quantities of heterogeneous data presents a significant opportunity to enhance data-driven care delivery. However, the sensitive nature of protected health information (PHI) raises valid concerns about data privacy and trust in remote LLM platforms. In addition, the cost associated with cloud-based artificial intelligence (AI) services continues to impede widespread adoption. To address these challenges, we propose a shift in the LLM execution environment from opaque, centralized cloud providers to a decentralized and dynamic fog computing architecture. By executing open-weight LLMs in more trusted environments, such as the user's edge device or a fog layer within a local network, we aim to mitigate the privacy, trust, and financial challenges associated with cloud-based LLMs. We further present SpeziLLM, an open-source framework designed to facilitate rapid and seamless leveraging of different LLM execution layers and lowering barriers to LLM integration in digital health applications. We demonstrate SpeziLLM's broad applicability across six digital health applications, showcasing its versatility in various healthcare settings.

LLMs can generate human-like dialogues, yet their ability to simulate early child-adult interactions remains largely unexplored. In this paper, we examined how effectively LLMs can capture the distinctive features of child-caregiver language in interaction, using both static and interactive benchmarking methods. We found that state-of-the-art LLMs like Llama 3 and GPT-4o can approximate child-caregiver dialogues at the word and utterance level, but they struggle to reproduce the child and caregiver's discursive patterns, exaggerate alignment, and fail to reach the level of diversity shown by humans. The broader goal of this work is to initiate the development of a comprehensive benchmark for LLMs in child-oriented applications.

Although inequities for individuals in different socioeconomic situations are starting to capture widespread attention, less attention has been given to the socioeconomic inequities that saturate socioeconomic-diverse individuals' user experiences. To enable HCI practitioners to attend to such inequities and avoid unwittingly introducing them, in this paper we consider a wide body of research relevant to how an individual's socioeconomic status (SES) can affect their user experiences with technology. We synthesize this foundational research to produce a core set of 6 evidence-based SES "facets" (attribute types and value ranges) that directly relate to user experiences for individuals in different SES strata. We then harness these SES facets to produce actionable paths forward -- including a new structured method we call SocioeconomicMag -- by which HCI researchers and practitioners can bring new socioeconomic-aware practices into their everyday HCI work.

Supervised machine learning often operates on the data-driven paradigm, wherein internal model parameters are autonomously optimized to converge predicted outputs with the ground truth, devoid of explicitly programming rules or a priori assumptions. Although data-driven methods have yielded notable successes across various benchmark datasets, they inherently treat models as opaque entities, thereby limiting their interpretability and yielding a lack of explanatory insights into their decision-making processes. In this work, we introduce Latent Boost, a novel approach that integrates advanced distance metric learning into supervised classification tasks, enhancing both interpretability and training efficiency. Thus during training, the model is not only optimized for classification metrics of the discrete data points but also adheres to the rule that the collective representation zones of each class should be sharply clustered. By leveraging the rich structural insights of intermediate model layer latent representations, Latent Boost improves classification interpretability, as demonstrated by higher Silhouette scores, while accelerating training convergence. These performance and latent structural benefits are achieved with minimum additional cost, making it broadly applicable across various datasets without requiring data-specific adjustments. Furthermore, Latent Boost introduces a new paradigm for aligning classification performance with improved model transparency to address the challenges of black-box models.

Predicting the evolution of complex systems governed by partial differential equations (PDEs) remains challenging, especially for nonlinear, chaotic behaviors. This study introduces Koopman-inspired Fourier Neural Operators (kFNO) and Convolutional Neural Networks (kCNN) to learn solution advancement operators for flame front instabilities. By transforming data into a high-dimensional latent space, these models achieve more accurate multi-step predictions compared to traditional methods. Benchmarking across one- and two-dimensional flame front scenarios demonstrates the proposed approaches' superior performance in short-term accuracy and long-term statistical reproduction, offering a promising framework for modeling complex dynamical systems.

Session types provide a typing discipline for message-passing systems. However, their theory often assumes an ideal world: one in which everything is reliable and without failures. Yet this is in stark contrast with distributed systems in the real world. To address this limitation, we introduce a new asynchronous multiparty session types (MPST) theory with crash-stop failures, where processes may crash arbitrarily and cease to interact after crashing. We augment asynchronous MPST and processes with crash handling branches, and integrate crash-stop failure semantics into types and processes. Our approach requires no user-level syntax extensions for global types, and features a formalisation of global semantics, which captures complex behaviours induced by crashed/crash handling processes. Our new theory covers the entire spectrum, ranging from the ideal world of total reliability to entirely unreliable scenarios where any process may crash, using optional reliability assumptions. Under these assumptions, we demonstrate the sound and complete correspondence between global and local type semantics, which guarantee deadlock-freedom, protocol conformance, and liveness of well-typed processes by construction, even in the presence of crashes.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

The inductive biases of graph representation learning algorithms are often encoded in the background geometry of their embedding space. In this paper, we show that general directed graphs can be effectively represented by an embedding model that combines three components: a pseudo-Riemannian metric structure, a non-trivial global topology, and a unique likelihood function that explicitly incorporates a preferred direction in embedding space. We demonstrate the representational capabilities of this method by applying it to the task of link prediction on a series of synthetic and real directed graphs from natural language applications and biology. In particular, we show that low-dimensional cylindrical Minkowski and anti-de Sitter spacetimes can produce equal or better graph representations than curved Riemannian manifolds of higher dimensions.

Recently, various auxiliary tasks have been proposed to accelerate representation learning and improve sample efficiency in deep reinforcement learning (RL). However, existing auxiliary tasks do not take the characteristics of RL problems into consideration and are unsupervised. By leveraging returns, the most important feedback signals in RL, we propose a novel auxiliary task that forces the learnt representations to discriminate state-action pairs with different returns. Our auxiliary loss is theoretically justified to learn representations that capture the structure of a new form of state-action abstraction, under which state-action pairs with similar return distributions are aggregated together. In low data regime, our algorithm outperforms strong baselines on complex tasks in Atari games and DeepMind Control suite, and achieves even better performance when combined with existing auxiliary tasks.

北京阿比特科技有限公司