亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The notion of variation is introduced for the Boolean set and based on which Boolean logic backpropagation principle is developed. Using this concept, deep models can be built with weights and activations being Boolean numbers and operated with Boolean logic instead of real arithmetic. In particular, Boolean deep models can be trained directly in the Boolean domain without latent weights. No gradient but logic is synthesized and backpropagated through layers.

相關內容

反向傳播一詞嚴格來說僅指用于計算梯度的算法,而不是指如何使用梯度。但是該術語通常被寬松地指整個學習算法,包括如何使用梯度,例如通過隨機梯度下降。反向傳播將增量計算概括為增量規則中的增量規則,該規則是反向傳播的單層版本,然后通過自動微分進行廣義化,其中反向傳播是反向累積(或“反向模式”)的特例。 在機器學習中,反向傳播(backprop)是一種廣泛用于訓練前饋神經網絡以進行監督學習的算法。對于其他人工神經網絡(ANN)都存在反向傳播的一般化–一類算法,通常稱為“反向傳播”。反向傳播算法的工作原理是,通過鏈規則計算損失函數相對于每個權重的梯度,一次計算一層,從最后一層開始向后迭代,以避免鏈規則中中間項的冗余計算。

Nonnegative tensor factorization (NTF) has become an important tool for feature extraction and part-based representation with preserved intrinsic structure information from nonnegative high-order data. However, the original NTF methods utilize Euclidean or Kullback-Leibler divergence as the loss function which treats each feature equally leading to the neglect of the side-information of features. To utilize correlation information of features and manifold information of samples, we introduce Wasserstein manifold nonnegative tensor factorization (WMNTF), which minimizes the Wasserstein distance between the distribution of input tensorial data and the distribution of reconstruction. Although some researches about Wasserstein distance have been proposed in nonnegative matrix factorization (NMF), they ignore the spatial structure information of higher-order data. We use Wasserstein distance (a.k.a Earth Mover's distance or Optimal Transport distance) as a metric and add a graph regularizer to a latent factor. Experimental results demonstrate the effectiveness of the proposed method compared with other NMF and NTF methods.

Quantum computing is finding promising applications in optimization, machine learning and physics, leading to the development of various models for representing quantum information. Because these representations are often studied in different contexts (many-body physics, machine learning, formal verification, simulation), little is known about fundamental trade-offs between their succinctness and the runtime of operations to update them. We therefore analytically investigate three widely-used quantum state representations: matrix product states (MPS), decision diagrams (DDs), and restricted Boltzmann machines (RBMs). We map the relative succinctness of these data structures and provide the complexity for relevant query and manipulation operations. Further, to chart the balance between succinctness and operation efficiency, we extend the concept of rapidity with support for the non-canonical data structures studied in this work, showing in particular that MPS is at least as rapid as some DDs. By providing a knowledge compilation map for quantum state representations, this paper contributes to the understanding of the inherent time and space efficiency trade-offs in this area.

Structured data in the form of tabular datasets contain features that are distinct and discrete, with varying individual and relative importances to the target. Combinations of one or more features may be more predictive and meaningful than simple individual feature contributions. R's mixed effect linear models library allows users to provide such interactive feature combinations in the model design. However, given many features and possible interactions to select from, model selection becomes an exponentially difficult task. We aim to automate the model selection process for predictions on tabular datasets incorporating feature interactions while keeping computational costs small. The framework includes two distinct approaches for feature selection: a Priority-based Random Grid Search and a Greedy Search method. The Priority-based approach efficiently explores feature combinations using prior probabilities to guide the search. The Greedy method builds the solution iteratively by adding or removing features based on their impact. Experiments on synthetic demonstrate the ability to effectively capture predictive feature combinations.

Numerous statistical methods have been developed to explore genomic imprinting and maternal effects, which are causes of parent-of-origin patterns in complex human diseases. However, most of them either only model one of these two confounded epigenetic effects, or make strong yet unrealistic assumptions about the population to avoid over-parameterization. A recent partial likelihood method (LIME) can identify both epigenetic effects based on case-control family data without those assumptions. Theoretical and empirical studies have shown its validity and robustness. However, because LIME obtains parameter estimation by maximizing partial likelihood, it is interesting to compare its efficiency with full likelihood maximizer. To overcome the difficulty in over-parameterization when using full likelihood, in this study we propose a Monte Carlo Expectation Maximization (MCEM) method to detect imprinting and maternal effects jointly. Those unknown mating type probabilities, the nuisance parameters, can be considered as latent variables in EM algorithm. Monte Carlo samples are used to numerically approximate the expectation function that cannot be solved algebraically. Our simulation results show that though this MCEM algorithm takes longer computational time, and can give higher bias in some simulations compared to LIME, it can generally detect both epigenetic effects with higher power and smaller standard error which demonstrates that it can be a good complement of LIME method.

We initiate a study of a new model of property testing that is a hybrid of testing properties of distributions and testing properties of strings. Specifically, the new model refers to testing properties of distributions, but these are distributions over huge objects (i.e., very long strings). Accordingly, the model accounts for the total number of local probes into these objects (resp., queries to the strings) as well as for the distance between objects (resp., strings), and the distance between distributions is defined as the earth mover's distance with respect to the relative Hamming distance between strings. We study the query complexity of testing in this new model, focusing on three directions. First, we try to relate the query complexity of testing properties in the new model to the sample complexity of testing these properties in the standard distribution testing model. Second, we consider the complexity of testing properties that arise naturally in the new model (e.g., distributions that capture random variations of fixed strings). Third, we consider the complexity of testing properties that were extensively studied in the standard distribution testing model: Two such cases are uniform distributions and pairs of identical distributions.

Software engineering is a domain characterized by intricate decision-making processes, often relying on nuanced intuition and consultation. Recent advancements in deep learning have started to revolutionize software engineering practices through elaborate designs implemented at various stages of software development. In this paper, we present an innovative paradigm that leverages large language models (LLMs) throughout the entire software development process, streamlining and unifying key processes through natural language communication, thereby eliminating the need for specialized models at each phase. At the core of this paradigm lies ChatDev, a virtual chat-powered software development company that mirrors the established waterfall model, meticulously dividing the development process into four distinct chronological stages: designing, coding, testing, and documenting. Each stage engages a team of agents, such as programmers, code reviewers, and test engineers, fostering collaborative dialogue and facilitating a seamless workflow. The chat chain acts as a facilitator, breaking down each stage into atomic subtasks. This enables dual roles, allowing for proposing and validating solutions through context-aware communication, leading to efficient resolution of specific subtasks. The instrumental analysis of ChatDev highlights its remarkable efficacy in software generation, enabling the completion of the entire software development process in under seven minutes at a cost of less than one dollar. It not only identifies and alleviates potential vulnerabilities but also rectifies potential hallucinations while maintaining commendable efficiency and cost-effectiveness. The potential of ChatDev unveils fresh possibilities for integrating LLMs into the realm of software development.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.

It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.

北京阿比特科技有限公司