Deformable linear objects (DLOs), such as rods, cables, and ropes, play important roles in daily life. However, manipulation of DLOs is challenging as large geometrically nonlinear deformations may occur during the manipulation process. This problem is made even more difficult as the different deformation modes (e.g., stretching, bending, and twisting) may result in elastic instabilities during manipulation. In this paper, we formulate a physics-guided data-driven method to solve a challenging manipulation task -- accurately deploying a DLO (an elastic rod) onto a rigid substrate along various prescribed patterns. Our framework combines machine learning, scaling analysis, and physical simulations to develop a physics-based neural controller for deployment. We explore the complex interplay between the gravitational and elastic energies of the manipulated DLO and obtain a control method for DLO deployment that is robust against friction and material properties. Out of the numerous geometrical and material properties of the rod and substrate, we show that only three non-dimensional parameters are needed to describe the deployment process with physical analysis. Therefore, the essence of the controlling law for the manipulation task can be constructed with a low-dimensional model, drastically increasing the computation speed. The effectiveness of our optimal control scheme is shown through a comprehensive robotic case study comparing against a heuristic control method for deploying rods for a wide variety of patterns. In addition to this, we also showcase the practicality of our control scheme by having a robot accomplish challenging high-level tasks such as mimicking human handwriting, cable placement, and tying knots.
The number of Language Models (LMs) dedicated to processing scientific text is on the rise. Keeping pace with the rapid growth of scientific LMs (SciLMs) has become a daunting task for researchers. To date, no comprehensive surveys on SciLMs have been undertaken, leaving this issue unaddressed. Given the constant stream of new SciLMs, appraising the state-of-the-art and how they compare to each other remain largely unknown. This work fills that gap and provides a comprehensive review of SciLMs, including an extensive analysis of their effectiveness across different domains, tasks and datasets, and a discussion on the challenges that lie ahead.
State-of-the-Art (SotA) hardware implementations of Deep Neural Networks (DNNs) incur high latencies and costs. Binary Neural Networks (BNNs) are potential alternative solutions to realize faster implementations without losing accuracy. In this paper, we first present a new data mapping, called TacitMap, suited for BNNs implemented based on a Computation-In-Memory (CIM) architecture. TacitMap maximizes the use of available parallelism, while CIM architecture eliminates the data movement overhead. We then propose a hardware accelerator based on optical phase change memory (oPCM) called EinsteinBarrier. Ein-steinBarrier incorporates TacitMap and adds an extra dimension for parallelism through wavelength division multiplexing, leading to extra latency reduction. The simulation results show that, compared to the SotA CIM baseline, TacitMap and EinsteinBarrier significantly improve execution time by up to ~154x and ~3113x, respectively, while also maintaining the energy consumption within 60% of that in the CIM baseline.
Large Language Models have emerged as prime candidates to tackle misinformation mitigation. However, existing approaches struggle with hallucinations and overconfident predictions. We propose an uncertainty quantification framework that leverages both direct confidence elicitation and sampled-based consistency methods to provide better calibration for NLP misinformation mitigation solutions. We first investigate the calibration of sample-based consistency methods that exploit distinct features of consistency across sample sizes and stochastic levels. Next, we evaluate the performance and distributional shift of a robust numeric verbalization prompt across single vs. two-step confidence elicitation procedure. We also compare the performance of the same prompt with different versions of GPT and different numerical scales. Finally, we combine the sample-based consistency and verbalized methods to propose a hybrid framework that yields a better uncertainty estimation for GPT models. Overall, our work proposes novel uncertainty quantification methods that will improve the reliability of Large Language Models in misinformation mitigation applications.
To reconstruct a 3D human surface from a single image, it is important to consider human pose, shape and clothing details simultaneously. In recent years, a combination of parametric body models (such as SMPL) that capture body pose and shape prior, and neural implicit functions that learn flexible clothing details, has been used to integrate the advantages of both approaches. However, the combined representation introduces additional computation, e.g. signed distance calculation, in 3D body feature extraction, which exacerbates the redundancy of the implicit query-and-infer process and fails to preserve the underlying body shape prior. To address these issues, we propose a novel IUVD-Feedback representation, which consists of an IUVD occupancy function and a feedback query algorithm. With this representation, the time-consuming signed distance calculation is replaced by a simple linear transformation in the IUVD space, leveraging the SMPL UV maps. Additionally, the redundant query points in the query-and-infer process are reduced through a feedback mechanism. This leads to more reasonable 3D body features and more effective query points, successfully preserving the parametric body prior. Moreover, the IUVD-Feedback representation can be embedded into any existing implicit human reconstruction pipelines without modifying the trained neural networks. Experiments on THuman2.0 dataset demonstrate that the proposed IUVD-Feedback representation improves result robustness and achieves three times faster acceleration in the query-and-infer process. Furthermore, this representation has the potential to be used in generative applications by leveraging its inherited semantic information from the parametric body model.
The emergent abilities of Large Language Models (LLMs), which power tools like ChatGPT and Bard, have produced both excitement and worry about how AI will impact academic writing. In response to rising concerns about AI use, authors of academic publications may decide to voluntarily disclose any AI tools they use to revise their manuscripts, and journals and conferences could begin mandating disclosure and/or turn to using detection services, as many teachers have done with student writing in class settings. Given these looming possibilities, we investigate whether academics view it as necessary to report AI use in manuscript preparation and how detectors react to the use of AI in academic writing.
Scheduling real-time tasks that utilize GPUs with analyzable guarantees poses a significant challenge due to the intricate interaction between CPU and GPU resources, as well as the complex GPU hardware and software stack. While much research has been conducted in the real-time research community, several limitations persist, including the absence or limited availability of preemption, extended blocking times, and/or the need for extensive modifications to program code. In this paper, we propose two novel techniques, namely the kernel thread and IOCTL-based approaches, to enable preemptive priority-based scheduling for real-time GPU tasks. Our approaches exert control over GPU context scheduling at the device driver level and enable preemptive GPU scheduling based on task priorities. The kernel thread-based approach achieves this without requiring modifications to user-level programs, while the IOCTL-based approach needs only a single macro at the boundaries of GPU access segments. In addition, we provide a comprehensive response time analysis that takes into account overlaps between different task segments, mitigating pessimism in worst-case estimates. Through empirical evaluations and case studies, we demonstrate the effectiveness of the proposed approaches in improving taskset schedulability and timeliness of real-time tasks. The results highlight significant improvements over prior work, with up to 40\% higher schedulability, while also achieving predictable worst-case behavior on Nvidia Jetson embedded platforms.
Score-based statistical models play an important role in modern machine learning, statistics, and signal processing. For hypothesis testing, a score-based hypothesis test is proposed in \cite{wu2022score}. We analyze the performance of this score-based hypothesis testing procedure and derive upper bounds on the probabilities of its Type I and II errors. We prove that the exponents of our error bounds are asymptotically (in the number of samples) tight for the case of simple null and alternative hypotheses. We calculate these error exponents explicitly in specific cases and provide numerical studies for various other scenarios of interest.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.