The combination of self-play and planning has achieved great successes in sequential games, for instance in Chess and Go. However, adapting algorithms such as AlphaZero to simultaneous games poses a new challenge. In these games, missing information about concurrent actions of other agents is a limiting factor as they may select different Nash equilibria or do not play optimally at all. Thus, it is vital to model the behavior of the other agents when interacting with them in simultaneous games. To this end, we propose Albatross: AlphaZero for Learning Bounded-rational Agents and Temperature-based Response Optimization using Simulated Self-play. Albatross learns to play the novel equilibrium concept of a Smooth Best Response Logit Equilibrium (SBRLE), which enables cooperation and competition with agents of any playing strength. We perform an extensive evaluation of Albatross on a set of cooperative and competitive simultaneous perfect-information games. In contrast to AlphaZero, Albatross is able to exploit weak agents in the competitive game of Battlesnake. Additionally, it yields an improvement of 37.6% compared to previous state of the art in the cooperative Overcooked benchmark.
Document-level Event Causality Identification (DECI) aims to identify causal relations between two events in documents. Recent research tends to use pre-trained language models to generate the event causal relations. Whereas, these methods are prone to the errors of sequential generation due to multiple events in a document. Moreover, the potential structures such as event coreference and related causal chain are neglected. In this paper, we propose a multi-task learning framework to enhance event causality identification with rationale and structure-aware causal question answering. Specifically, the DECI task is transformed into multiple-choice question answering, and the causes and effects of the questioned event are generated with large language models. In addition, we generate the rationales to explain why these events have causal relations. Moreover, we construct an event structure graph, which models the multi-hop potential relations for causal reasoning of the current event. Experiments on two benchmark datasets show the great advantages of our proposed approach compared to the state-of-the-art methods. Moreover, we conduct both quantitative and qualitative analyses, which shed light on why each component of our approach can lead to great improvements.
Video games are increasingly accessible to blind and low vision (BLV) players, yet many aspects remain inaccessible. One aspect is the joy players feel when they explore environments and make new discoveries, which is integral to many games. Sighted players experience discovery by surveying environments and identifying unexplored areas. Current accessibility tools, however, guide BLV players directly to items and places, robbing them of that experience. Thus, a crucial challenge is to develop navigation assistance tools that also foster exploration and discovery. To address this challenge, we propose the concept of exploration assistance in games and design Surveyor, an in-game exploration assistance tool that enhances discovery by tracking where BLV players look and highlighting unexplored areas. We designed Surveyor using insights from a formative study and compared Surveyor's effectiveness to approaches found in existing accessible games. Our findings reveal implications for facilitating richer play experiences for BLV users within games.
Despite the great success of deep learning in stereo matching, recovering accurate disparity maps is still challenging. Currently, L1 and cross-entropy are the two most widely used losses for stereo network training. Compared with the former, the latter usually performs better thanks to its probability modeling and direct supervision to the cost volume. However, how to accurately model the stereo ground-truth for cross-entropy loss remains largely under-explored. Existing works simply assume that the ground-truth distributions are uni-modal, which ignores the fact that most of the edge pixels can be multi-modal. In this paper, a novel adaptive multi-modal cross-entropy loss (ADL) is proposed to guide the networks to learn different distribution patterns for each pixel. Moreover, we optimize the disparity estimator to further alleviate the bleeding or misalignment artifacts in inference. Extensive experimental results show that our method is generic and can help classic stereo networks regain state-of-the-art performance. In particular, GANet with our method ranks $1^{st}$ on both the KITTI 2015 and 2012 benchmarks among the published methods. Meanwhile, excellent synthetic-to-realistic generalization performance can be achieved by simply replacing the traditional loss with ours.
We propose the first loss function for approximate Nash equilibria of normal-form games that is amenable to unbiased Monte Carlo estimation. This construction allows us to deploy standard non-convex stochastic optimization techniques for approximating Nash equilibria, resulting in novel algorithms with provable guarantees. We complement our theoretical analysis with experiments demonstrating that stochastic gradient descent can outperform previous state-of-the-art approaches.
We study distributed algorithms for finding a Nash equilibrium (NE) in a class of non-cooperative convex games under partial information. Specifically, each agent has access only to its own smooth local cost function and can receive information from its neighbors in a time-varying directed communication network. To this end, we propose a distributed gradient play algorithm to compute a NE by utilizing local information exchange among the players. In this algorithm, every agent performs a gradient step to minimize its own cost function while sharing and retrieving information locally among its neighbors. The existing methods impose strong assumptions such as balancedness of the mixing matrices and global knowledge of the network communication structure, including Perron-Frobenius eigenvector of the adjacency matrix and other graph connectivity constants. In contrast, our approach relies only on a reasonable and widely-used assumption of row-stochasticity of the mixing matrices. We analyze the algorithm for time-varying directed graphs and prove its convergence to the NE, when the agents' cost functions are strongly convex and have Lipschitz continuous gradients. Numerical simulations are performed for a Nash-Cournot game to illustrate the efficacy of the proposed algorithm.
Feint actions refer to a set of deceptive actions, which enable players to obtain temporal advantages from their opponents. Such actions are regarded as widely-used tactic in most non-deterministic Two-player Games (e.g. boxing and fencing). However, existing literature does not provide comprehensive and concrete formalization on Feint actions, and their implications on Two-Player Games. We argue that a full exploration on Feint actions is of great importance towards more realistic Two-player Games. In this paper, we provide the first comprehensive and concrete formalization of Feint actions. The key idea of our work is to (1) allow automatic generation of Feint actions, via our proposed Palindrome-directed Generation of Feint actions; and (2) provide concrete principles to properly combine Feint and attack actions. Based on our formalization of Feint actions, we also explore the implications on the game strategy model, and provide optimizations to better incorporate Feint actions. Our experimental results shows that accounting for Feint actions in Non-Deterministic Games (1) brings overall benefits to the game design; and (2) has great benefits on on either game animations or strategy designs, which also introduces a great extent of randomness into randomness-demanded Game models.
Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.
Interest in the field of Explainable Artificial Intelligence has been growing for decades and has accelerated recently. As Artificial Intelligence models have become more complex, and often more opaque, with the incorporation of complex machine learning techniques, explainability has become more critical. Recently, researchers have been investigating and tackling explainability with a user-centric focus, looking for explanations to consider trustworthiness, comprehensibility, explicit provenance, and context-awareness. In this chapter, we leverage our survey of explanation literature in Artificial Intelligence and closely related fields and use these past efforts to generate a set of explanation types that we feel reflect the expanded needs of explanation for today's artificial intelligence applications. We define each type and provide an example question that would motivate the need for this style of explanation. We believe this set of explanation types will help future system designers in their generation and prioritization of requirements and further help generate explanations that are better aligned to users' and situational needs.
Policy gradient methods are often applied to reinforcement learning in continuous multiagent games. These methods perform local search in the joint-action space, and as we show, they are susceptable to a game-theoretic pathology known as relative overgeneralization. To resolve this issue, we propose Multiagent Soft Q-learning, which can be seen as the analogue of applying Q-learning to continuous controls. We compare our method to MADDPG, a state-of-the-art approach, and show that our method achieves better coordination in multiagent cooperative tasks, converging to better local optima in the joint action space.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.