亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Crystallographic groups describe the symmetries of crystals and other repetitive structures encountered in nature and the sciences. These groups include the wallpaper and space groups. We derive linear and nonlinear representations of functions that are (1) smooth and (2) invariant under such a group. The linear representation generalizes the Fourier basis to crystallographically invariant basis functions. We show that such a basis exists for each crystallographic group, that it is orthonormal in the relevant $L_2$ space, and recover the standard Fourier basis as a special case for pure shift groups. The nonlinear representation embeds the orbit space of the group into a finite-dimensional Euclidean space. We show that such an embedding exists for every crystallographic group, and that it factors functions through a generalization of a manifold called an orbifold. We describe algorithms that, given a standardized description of the group, compute the Fourier basis and an embedding map. As examples, we construct crystallographically invariant neural networks, kernel machines, and Gaussian processes.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · 信念傳播 · INFORMS · 通道 · 標注 ·
2023 年 7 月 31 日

In the study of Ising models on large locally tree-like graphs, in both rigorous and non-rigorous methods one is often led to understanding the so-called belief propagation distributional recursions and its fixed points. We prove that there is at most one non-trivial fixed point for Ising models with zero or certain random external fields. Previously this was only known for sufficiently ``low-temperature'' models. Our main innovation is in applying information-theoretic ideas of channel comparison leading to a new metric (degradation index) between binary-input-symmetric (BMS) channels under which the Belief Propagation (BP) operator is a strict contraction (albeit non-multiplicative). A key ingredient of our proof is a strengthening of the classical stringy tree lemma of (Evans-Kenyon-Peres-Schulman'00). Our result simultaneously closes the following 6 conjectures in the literature: 1) independence of robust reconstruction accuracy to leaf noise in broadcasting on trees (Mossel-Neeman-Sly'16); 2) uselessness of global information for a labeled 2-community stochastic block model, or 2-SBM (Kanade-Mossel-Schramm'16); 3) optimality of local algorithms for 2-SBM under noisy side information (Mossel-Xu'16); 4) uniqueness of BP fixed point in broadcasting on trees in the Gaussian (large degree) limit (ibid); 5) boundary irrelevance in broadcasting on trees (Abbe-Cornacchia-Gu-Polyanskiy'21); 6) characterization of entropy (and mutual information) of community labels given the graph in 2-SBM (ibid).

Densest Subgraph Problem (DSP) is an important primitive problem with a wide range of applications, including fraud detection, community detection and DNA motif discovery. Edge-based density is one of the most common metrics in DSP. Although a maximum flow algorithm can exactly solve it in polynomial time, the increasing amount of data and the high complexity of algorithms motivate scientists to find approximation algorithms. Among these, its duality of linear programming derives several iterative algorithms including Greedy++, Frank-Wolfe and FISTA which redistribute edge weights to find the densest subgraph, however, these iterative algorithms vibrate around the optimal solution, which are not satisfactory for fast convergence. We propose our main algorithm Locally Optimal Weight Distribution (LOWD) to distribute the remaining edge weights in a locally optimal operation to converge to the optimal solution monotonically. Theoretically, we show that it will reach the optimal state of a specific linear programming which is called locally-dense decomposition. Besides, we show that it is not necessary to consider most of the edges in the original graph. Therefore, we develop a pruning algorithm using a modified Counting Sort to prune graphs by removing unnecessary edges and nodes, and then we can search the densest subgraph in a much smaller graph.

We provide a unified operational framework for the study of causality, non-locality and contextuality, in a fully device-independent and theory-independent setting. Our work has its roots in the sheaf-theoretic framework for contextuality by Abramsky and Brandenburger, which it extends to include arbitrary causal orders (be they definite, dynamical or indefinite). We define a notion of causal function for arbitrary spaces of input histories, and we show that the explicit imposition of causal constraints on joint outputs is equivalent to the free assignment of local outputs to the tip events of input histories. We prove factorisation results for causal functions over parallel, sequential, and conditional sequential compositions of the underlying spaces. We prove that causality is equivalent to continuity with respect to the lowerset topology on the underlying spaces, and we show that partial causal functions defined on open sub-spaces can be bundled into a presheaf. In a striking departure from the Abramsky-Brandenburger setting, however, we show that causal functions fail, under certain circumstances, to form a sheaf. We define empirical models as compatible families in the presheaf of probability distributions on causal functions, for arbitrary open covers of the underlying space of input histories. We show the existence of causally-induced contextuality, a phenomenon arising when the causal constraints themselves become context-dependent, and we prove a no-go result for non-locality on total orders, both static and dynamical.

We study a class of nonlinear nonlocal conservation laws with discontinuous flux, modeling crowd dynamics and traffic flow, without any additional conditions on finiteness/discreteness of the set of discontinuities or on the monotonicity of the kernel/the discontinuous coefficient. Strong compactness of the Godunov and Lax-Friedrichs type approximations is proved, providing the existence of entropy solutions. A proof of the uniqueness of the adapted entropy solutions is provided, establishing the convergence of the entire sequence of finite volume approximations to the adapted entropy solution. As per the current literature, this is the first well-posedness result for the aforesaid class and connects the theory of nonlocal conservation laws (with discontinuous flux), with its local counterpart in a generic setup. Some numerical examples are presented to display the performance of the schemes and explore the limiting behavior of these nonlocal conservation laws to their local counterparts.

A geometric graph is an abstract graph along with an embedding of the graph into the Euclidean plane which can be used to model a wide range of data sets. The ability to compare and cluster such objects is required in a data analysis pipeline, leading to a need for distances or metrics on these objects. In this work, we study the interleaving distance on geometric graphs, where functor representations of data can be compared by finding pairs of natural transformations between them. However, in many cases, particularly those of the set-valued functor variety, computation of the interleaving distance is NP-hard. For this reason, we take inspiration from the work of Robinson to find quality measures for families of maps that do not rise to the level of a natural transformation. Specifically, we call collections $\phi = \{\phi_U\mid U\}$ and $\psi = \{\psi_U\mid U\}$ which do not necessarily form a true interleaving an \textit{assignment}. In the case of embedded graphs, we impose a grid structure on the plane, treat this as a poset endowed with the Alexandroff topology $K$, and encode the embedded graph data as functors $F: \mathbf{Open}(K) \to \mathbf{Set}$ where $F(U)$ is the set of connected components of the graph inside of the geometric realization of the set $U$. We then endow the image with the extra structure of a metric space and define a loss function $L(\phi,\psi)$ which measures how far the required diagrams of an interleaving are from commuting. Then for a pair of assignments, we use this loss function to bound the interleaving distance, with an eye toward computation and approximation of the distance. We expect these ideas are not only useful in our particular use case of embedded graphs, but can be extended to a larger class of interleaving distance problems where computational complexity creates a barrier to use in practice.

It has long been believed that the brain is highly modular both in terms of structure and function, although recent evidence has led some to question the extent of both types of modularity. We used artificial neural networks to test the hypothesis that structural modularity is sufficient to guarantee functional specialization, and find that in general, this doesn't necessarily hold except at extreme levels. We then systematically tested which features of the environment and network do lead to the emergence of specialization. We used a simple toy environment, task and network, allowing us precise control, and show that in this setup, several distinct measures of specialization give qualitatively similar results. We further find that (1) specialization can only emerge in environments where features of that environment are meaningfully separable, (2) specialization preferentially emerges when the network is strongly resource-constrained, and (3) these findings are qualitatively similar across different network architectures, but the quantitative relationships depends on the architecture type. Finally, we show that functional specialization varies dynamically across time, and demonstrate that these dynamics depend on both the timing and bandwidth of information flow in the network. We conclude that a static notion of specialization, based on structural modularity, is likely too simple a framework for understanding intelligent systems in situations of real-world complexity. We propose that thoroughly stress testing candidate definitions of functional modularity in simplified scenarios before extending to more complex data, network models and electrophysiological recordings is likely to be a fruitful approach.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

The last decade has witnessed an experimental revolution in data science and machine learning, epitomised by deep learning methods. Indeed, many high-dimensional learning tasks previously thought to be beyond reach -- such as computer vision, playing Go, or protein folding -- are in fact feasible with appropriate computational scale. Remarkably, the essence of deep learning is built from two simple algorithmic principles: first, the notion of representation or feature learning, whereby adapted, often hierarchical, features capture the appropriate notion of regularity for each task, and second, learning by local gradient-descent type methods, typically implemented as backpropagation. While learning generic functions in high dimensions is a cursed estimation problem, most tasks of interest are not generic, and come with essential pre-defined regularities arising from the underlying low-dimensionality and structure of the physical world. This text is concerned with exposing these regularities through unified geometric principles that can be applied throughout a wide spectrum of applications. Such a 'geometric unification' endeavour, in the spirit of Felix Klein's Erlangen Program, serves a dual purpose: on one hand, it provides a common mathematical framework to study the most successful neural network architectures, such as CNNs, RNNs, GNNs, and Transformers. On the other hand, it gives a constructive procedure to incorporate prior physical knowledge into neural architectures and provide principled way to build future architectures yet to be invented.

In order to overcome the expressive limitations of graph neural networks (GNNs), we propose the first method that exploits vector flows over graphs to develop globally consistent directional and asymmetric aggregation functions. We show that our directional graph networks (DGNs) generalize convolutional neural networks (CNNs) when applied on a grid. Whereas recent theoretical works focus on understanding local neighbourhoods, local structures and local isomorphism with no global information flow, our novel theoretical framework allows directional convolutional kernels in any graph. First, by defining a vector field in the graph, we develop a method of applying directional derivatives and smoothing by projecting node-specific messages into the field. Then we propose the use of the Laplacian eigenvectors as such vector field, and we show that the method generalizes CNNs on an n-dimensional grid, and is provably more discriminative than standard GNNs regarding the Weisfeiler-Lehman 1-WL test. Finally, we bring the power of CNN data augmentation to graphs by providing a means of doing reflection, rotation and distortion on the underlying directional field. We evaluate our method on different standard benchmarks and see a relative error reduction of 8\% on the CIFAR10 graph dataset and 11% to 32% on the molecular ZINC dataset. An important outcome of this work is that it enables to translate any physical or biological problems with intrinsic directional axes into a graph network formalism with an embedded directional field.

Many modern data analytics applications on graphs operate on domains where graph topology is not known a priori, and hence its determination becomes part of the problem definition, rather than serving as prior knowledge which aids the problem solution. Part III of this monograph starts by addressing ways to learn graph topology, from the case where the physics of the problem already suggest a possible topology, through to most general cases where the graph topology is learned from the data. A particular emphasis is on graph topology definition based on the correlation and precision matrices of the observed data, combined with additional prior knowledge and structural conditions, such as the smoothness or sparsity of graph connections. For learning sparse graphs (with small number of edges), the least absolute shrinkage and selection operator, known as LASSO is employed, along with its graph specific variant, graphical LASSO. For completeness, both variants of LASSO are derived in an intuitive way, and explained. An in-depth elaboration of the graph topology learning paradigm is provided through several examples on physically well defined graphs, such as electric circuits, linear heat transfer, social and computer networks, and spring-mass systems. As many graph neural networks (GNN) and convolutional graph networks (GCN) are emerging, we have also reviewed the main trends in GNNs and GCNs, from the perspective of graph signal filtering. Tensor representation of lattice-structured graphs is next considered, and it is shown that tensors (multidimensional data arrays) are a special class of graph signals, whereby the graph vertices reside on a high-dimensional regular lattice structure. This part of monograph concludes with two emerging applications in financial data processing and underground transportation networks modeling.

北京阿比特科技有限公司