{mayi_des}
This study presents a novel high-order numerical method designed for solving the two-dimensional time-fractional convection-diffusion (TFCD) equation. The Caputo definition is employed to characterize the time-fractional derivative. A weak singularity at the initial time ($t=0$) is encountered in the considered problem, which is effectively managed by adopting a discretization approach for the time-fractional derivative, where Alikhanov's high-order L2-1$_\sigma$ formula is applied on a non-uniform fitted mesh, resulting in successful tackling of the singularity. A high-order two-dimensional compact operator is implemented to approximate the spatial variables. The alternating direction implicit (ADI) approach is then employed to solve the resulting system of equations by decomposing the two-dimensional problem into two separate one-dimensional problems. The theoretical analysis, encompassing both stability and convergence aspects, has been conducted comprehensively, and it has shown that method is convergent with an order $\mathcal O\left(N_t^{-\min\{3-\alpha,\theta\alpha,1+2\alpha,2+\alpha\}}+h_x^4+h_y^4\right)$, where $\alpha\in(0,1)$ represents the order of the fractional derivative, $N_t$ is the temporal discretization parameter and $h_x$ and $h_y$ represent spatial mesh widths. Moreover, the parameter $\theta$ is utilized in the construction of the fitted mesh.
We study pointwise estimation and uncertainty quantification for a sparse variational Gaussian process method with eigenvector inducing variables. For a rescaled Brownian motion prior, we derive theoretical guarantees and limitations for the frequentist size and coverage of pointwise credible sets. For sufficiently many inducing variables, we precisely characterize the asymptotic frequentist coverage, deducing when credible sets from this variational method are conservative and when overconfident/misleading. We numerically illustrate the applicability of our results and discuss connections with other common Gaussian process priors.
A finite element based computational scheme is developed and employed to assess a duality based variational approach to the solution of the linear heat and transport PDE in one space dimension and time, and the nonlinear system of ODEs of Euler for the rotation of a rigid body about a fixed point. The formulation turns initial-(boundary) value problems into degenerate elliptic boundary value problems in (space)-time domains representing the Euler-Lagrange equations of suitably designed dual functionals in each of the above problems. We demonstrate reasonable success in approximating solutions of this range of parabolic, hyperbolic, and ODE primal problems, which includes energy dissipation as well as conservation, by a unified dual strategy lending itself to a variational formulation. The scheme naturally associates a family of dual solutions to a unique primal solution; such `gauge invariance' is demonstrated in our computed solutions of the heat and transport equations, including the case of a transient dual solution corresponding to a steady primal solution of the heat equation. Primal evolution problems with causality are shown to be correctly approximated by non-causal dual problems.
We study a category of probability spaces and measure-preserving Markov kernels up to almost sure equality. This category contains, among its isomorphisms, mod-zero isomorphisms of probability spaces. It also gives an isomorphism between the space of values of a random variable and the sigma-algebra that it generates on the outcome space, reflecting the standard mathematical practice of using the two interchangeably, for example when taking conditional expectations. We show that a number of constructions and results from classical probability theory, mostly involving notions of equilibrium, can be expressed and proven in terms of this category. In particular: - Given a stochastic dynamical system acting on a standard Borel space, we show that the almost surely invariant sigma-algebra can be obtained as a limit and as a colimit; - In the setting above, the almost surely invariant sigma-algebra gives rise, up to isomorphism of our category, to a standard Borel space; - As a corollary, we give a categorical version of the ergodic decomposition theorem for stochastic actions; - As an example, we show how de Finetti's theorem and the Hewitt-Savage and Kolmogorov zero-one laws fit in this limit-colimit picture. This work uses the tools of categorical probability, in particular Markov categories, as well as the theory of dagger categories.
We couple the L1 discretization of the Caputo fractional derivative in time with the Galerkin scheme to devise a linear numerical method for the semilinear subdiffusion equation. Two important points that we make are: nonsmooth initial data and time-dependent diffusion coefficient. We prove the stability and convergence of the method under weak assumptions concerning regularity of the diffusivity. We find optimal pointwise in space and global in time errors, which are verified with several numerical experiments.
This paper presents a novel boundary integral equation (BIE) formulation for the two-dimensional time-harmonic water-waves problem. It utilizes a complex-scaled Laplace's free-space Green's function, resulting in a BIE posed on the infinite boundaries of the domain. The perfectly matched layer (PML) coordinate stretching that is used to render propagating waves exponentially decaying, allows for the effective truncation and discretization of the BIE unbounded domain. We show through a variety of numerical examples that, despite the logarithmic growth of the complex-scaled Laplace's free-space Green's function, the truncation errors are exponentially small with respect to the truncation length. Our formulation uses only simple function evaluations (e.g. complex logarithms and square roots), hence avoiding the need to compute the involved water-wave Green's function. Finally, we show that the proposed approach can also be used to find complex resonances through a \emph{linear} eigenvalue problem since the Green's function is frequency-independent.
We propose a finite element discretization for the steady, generalized Navier-Stokes equations for fluids with shear-dependent viscosity, completed with inhomogeneous Dirichlet boundary conditions and an inhomogeneous divergence constraint. We establish (weak) convergence of discrete solutions as well as a priori error estimates for the velocity vector field and the scalar kinematic pressure. Numerical experiments complement the theoretical findings.
We present a multigrid algorithm to solve efficiently the large saddle-point systems of equations that typically arise in PDE-constrained optimization under uncertainty. The algorithm is based on a collective smoother that at each iteration sweeps over the nodes of the computational mesh, and solves a reduced saddle-point system whose size depends on the number $N$ of samples used to discretized the probability space. We show that this reduced system can be solved with optimal $O(N)$ complexity. We test the multigrid method on three problems: a linear-quadratic problem, possibly with a local or a boundary control, for which the multigrid method is used to solve directly the linear optimality system; a nonsmooth problem with box constraints and $L^1$-norm penalization on the control, in which the multigrid scheme is used within a semismooth Newton iteration; a risk-adverse problem with the smoothed CVaR risk measure where the multigrid method is called within a preconditioned Newton iteration. In all cases, the multigrid algorithm exhibits excellent performances and robustness with respect to the parameters of interest.
This paper proposes a strategy to solve the problems of the conventional s-version of finite element method (SFEM) fundamentally. Because SFEM can reasonably model an analytical domain by superimposing meshes with different spatial resolutions, it has intrinsic advantages of local high accuracy, low computation time, and simple meshing procedure. However, it has disadvantages such as accuracy of numerical integration and matrix singularity. Although several additional techniques have been proposed to mitigate these limitations, they are computationally expensive or ad-hoc, and detract from its strengths. To solve these issues, we propose a novel strategy called B-spline based SFEM. To improve the accuracy of numerical integration, we employed cubic B-spline basis functions with $C^2$-continuity across element boundaries as the global basis functions. To avoid matrix singularity, we applied different basis functions to different meshes. Specifically, we employed the Lagrange basis functions as local basis functions. The numerical results indicate that using the proposed method, numerical integration can be calculated with sufficient accuracy without any additional techniques used in conventional SFEM. Furthermore, the proposed method avoids matrix singularity and is superior to conventional methods in terms of convergence for solving linear equations. Therefore, the proposed method has the potential to reduce computation time while maintaining a comparable accuracy to conventional SFEM.
We introduce a proof-theoretic method for showing nondefinability of second-order intuitionistic connectives by quantifier-free schemata. We apply the method to confirm that Taranovsky's "realizability disjunction" connective does not admit a quantifier-free definition, and use it to obtain new results and more nuanced information about the nondefinability of Kreisel's and Po{\l}acik's unary connectives. The finitary and combinatorial nature of our method makes it more resilient to changes in metatheory than common semantic approaches, whose robustness tends to waver once we pass to non-classical and especially anti-classical settings. Furthermore, we can easily transcribe the problem-specific subproofs into univalent type theory and check them using the Agda proof assistant.
Deep learning-based numerical schemes for solving high-dimensional backward stochastic differential equations (BSDEs) have recently raised plenty of scientific interest. While they enable numerical methods to approximate very high-dimensional BSDEs, their reliability has not been studied and is thus not understood. In this work, we study uncertainty quantification (UQ) for a class of deep learning-based BSDE schemes. More precisely, we review the sources of uncertainty involved in the schemes and numerically study the impact of different sources. Usually, the standard deviation (STD) of the approximate solutions obtained from multiple runs of the algorithm with different datasets is calculated to address the uncertainty. This approach is computationally quite expensive, especially for high-dimensional problems. Hence, we develop a UQ model that efficiently estimates the STD of the approximate solution using only a single run of the algorithm. The model also estimates the mean of the approximate solution, which can be leveraged to initialize the algorithm and improve the optimization process. Our numerical experiments show that the UQ model produces reliable estimates of the mean and STD of the approximate solution for the considered class of deep learning-based BSDE schemes. The estimated STD captures multiple sources of uncertainty, demonstrating its effectiveness in quantifying the uncertainty. Additionally, the model illustrates the improved performance when comparing different schemes based on the estimated STD values. Furthermore, it can identify hyperparameter values for which the scheme achieves good approximations.