亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Reconfigurable intelligent surfaces (RISs) allow controlling the propagation environment in wireless networks by tuning multiple reflecting elements. RISs have been traditionally realized through single connected architectures, mathematically characterized by a diagonal scattering matrix. Recently, beyond diagonal RISs (BD-RISs) have been proposed as a novel branch of RISs whose scattering matrix is not limited to be diagonal, which creates new benefits and opportunities for RISs. Efficient BD-RIS architectures have been realized based on group and fully connected reconfigurable impedance networks. However, a closed-form solution for the global optimal scattering matrix of these architectures is not yet available. In this paper, we provide such a closed-form solution proving that the theoretical performance upper bounds can be exactly achieved for any channel realization. We first consider the received signal power maximization in single-user single-input single-output (SISO) systems aided by a BD-RIS working in reflective or transmissive mode. Then, we extend our solution to single-user multiple-input multiple-output (MIMO) and multi-user multiple-input single-output (MISO) systems. We show that our algorithm is less complex than the iterative optimization algorithms employed in the previous literature. The complexity of our algorithm grows linearly (resp. cubically) with the number of RIS elements in the case of group (resp. fully) connected architectures.

相關內容

Future wireless networks and sensing systems will benefit from access to large chunks of spectrum above 100 GHz, to achieve terabit-per-second data rates in 6th Generation (6G) cellular systems and improve accuracy and reach of Earth exploration and sensing and radio astronomy applications. These are extremely sensitive to interference from artificial signals, thus the spectrum above 100 GHz features several bands which are protected from active transmissions under current spectrum regulations. To provide more agile access to the spectrum for both services, active and passive users will have to coexist without harming passive sensing operations. In this paper, we provide the first, fundamental analysis of Radio Frequency Interference (RFI) that large-scale terrestrial deployments introduce in different satellite sensing systems now orbiting the Earth. We develop a geometry-based analysis and extend it into a data-driven model which accounts for realistic propagation, building obstruction, ground reflection, for network topology with up to $10^5$ nodes in more than $85$ km$^2$. We show that the presence of harmful RFI depends on several factors, including network load, density and topology, satellite orientation, and building density. The results and methodology provide the foundation for the development of coexistence solutions and spectrum policy towards 6G.

This paper investigates joint device identification, channel estimation, and signal detection for LEO satellite-enabled grant-free random access, where a multiple-input multipleoutput (MIMO) system with orthogonal time-frequency space modulation (OTFS) is utilized to combat the dynamics of the terrestrial-satellite link (TSL). We divide the receiver structure into three modules: first, a linear module for identifying active devices, which leverages the generalized approximate message passing (GAMP) algorithm to eliminate inter-user interference in the delay-Doppler domain; second, a non-linear module adopting the message passing algorithm to jointly estimate channel and detect transmit signals; the third aided by Markov random field (MRF) aims to explore the three dimensional block sparsity of channel in the delay-Doppler-angle domain. The soft information is exchanged iteratively between these three modules by careful scheduling. Furthermore, the expectation-maximization algorithm is embedded to learn the hyperparameters in prior distributions. Simulation results demonstrate that the proposed scheme outperforms the conventional methods significantly in terms of activity error rate, channel estimation accuracy, and symbol error rate.

The emergence of large-scale wireless networks with partially-observable and time-varying dynamics has imposed new challenges on the design of optimal control policies. This paper studies efficient scheduling algorithms for wireless networks subject to generalized interference constraint, where mean arrival and mean service rates are unknown and non-stationary. This model exemplifies realistic edge devices' characteristics of wireless communication in modern networks. We propose a novel algorithm termed MW-UCB for generalized wireless network scheduling, which is based on the Max-Weight policy and leverages the Sliding-Window Upper-Confidence Bound to learn the channels' statistics under non-stationarity. MW-UCB is provably throughput-optimal under mild assumptions on the variability of mean service rates. Specifically, as long as the total variation in mean service rates over any time period grows sub-linearly in time, we show that MW-UCB can achieve the stability region arbitrarily close to the stability region of the class of policies with full knowledge of the channel statistics. Extensive simulations validate our theoretical results and demonstrate the favorable performance of MW-UCB.

With deep neural networks (DNNs) emerging as the backbone in a multitude of computer vision tasks, their adoption in real-world applications broadens continuously. Given the abundance and omnipresence of smart devices in the consumer landscape, "smart ecosystems'' are being formed where sensing happens concurrently rather than standalone. This is shifting the on-device inference paradigm towards deploying centralised neural processing units (NPUs) at the edge, where multiple devices (e.g. in smart homes or autonomous vehicles) can stream their data for processing with dynamic rates. While this provides enhanced potential for input batching, naive solutions can lead to subpar performance and quality of experience, especially under spiking loads. At the same time, the deployment of dynamic DNNs, comprising stochastic computation graphs (e.g. early-exit (EE) models), introduces a new dimension of dynamic behaviour in such systems. In this work, we propose a novel early-exit-aware scheduling algorithm that allows sample preemption at run time, to account for the dynamicity introduced both by the arrival and early-exiting processes. At the same time, we introduce two novel dimensions to the design space of the NPU hardware architecture, namely Fluid Batching and Stackable Processing Elements, that enable run-time adaptability to different batch sizes and significantly improve the NPU utilisation even at small batches. Our evaluation shows that the proposed system achieves an average 1.97x and 6.7x improvement over state-of-the-art DNN streaming systems in terms of average latency and tail latency service-level objective (SLO) satisfaction, respectively.

Wireless short-packet communications pose challenges to the security and reliability of the transmission. Besides, the proactive warder compounds these challenges, who detects and interferes with the potential transmission. An extra jamming channel is introduced by the proactive warder compared with the passive one, resulting in the inapplicability of analytical methods and results in exsiting works. Thus, effective system design schemes are required for short-packet communications against the proactive warder. To address this issue, we consider the analysis and design of covert and reliable transmissions for above systems. Specifically, to investigate the reliable and covert performance of the system, detection error probability at the warder and decoding error probability at the receiver are derived, which is affected by both the transmit power and the jamming power. Furthermore, to maximize the effective throughput, an optimization framework is proposed under reliability and covertness constraints. Numerical results verify the accuracy of analytical results and the feasibility of the optimization framework. It is shown that the tradeoff between transmission reliability and covertness is changed by the proactive warder compared with the passive one. Besides, it is shown that longer blocklength is always beneficial to improve the throughput for systems with optimized transmission rates. But when transmission rates are fixed, the blocklength should be carefully designed since the maximum one is not optimal in this case.

As a crucial infrastructure of intelligent mobile robots, LiDAR-Inertial odometry (LIO) provides the basic capability of state estimation by tracking LiDAR scans. The high-accuracy tracking generally involves the kNN search, which is used with minimizing the point-to-plane distance. The cost for this, however, is maintaining a large local map and performing kNN plane fit for each point. In this work, we reduce both time and space complexity of LIO by saving these unnecessary costs. Technically, we design a plane pre-fitting (PPF) pipeline to track the basic skeleton of the 3D scene. In PPF, planes are not fitted individually for each scan, let alone for each point, but are updated incrementally as the scene 'flows'. Unlike kNN, the PPF is more robust to noisy and non-strict planes with our iterative Principal Component Analyse (iPCA) refinement. Moreover, a simple yet effective sandwich layer is introduced to eliminate false point-to-plane matches. Our method was extensively tested on a total number of 22 sequences across 5 open datasets, and evaluated in 3 existing state-of-the-art LIO systems. By contrast, LIO-PPF can consume only 36% of the original local map size to achieve up to 4x faster residual computing and 1.92x overall FPS, while maintaining the same level of accuracy. We fully open source our implementation at //github.com/xingyuuchen/LIO-PPF.

For Industry 4.0 Revolution, cooperative autonomous mobility systems are widely used based on multi-agent reinforcement learning (MARL). However, the MARL-based algorithms suffer from huge parameter utilization and convergence difficulties with many agents. To tackle these problems, a quantum MARL (QMARL) algorithm based on the concept of actor-critic network is proposed, which is beneficial in terms of scalability, to deal with the limitations in the noisy intermediate-scale quantum (NISQ) era. Additionally, our QMARL is also beneficial in terms of efficient parameter utilization and fast convergence due to quantum supremacy. Note that the reward in our QMARL is defined as task precision over computation time in multiple agents, thus, multi-agent cooperation can be realized. For further improvement, an additional technique for scalability is proposed, which is called projection value measure (PVM). Based on PVM, our proposed QMARL can achieve the highest reward, by reducing the action dimension into a logarithmic-scale. Finally, we can conclude that our proposed QMARL with PVM outperforms the other algorithms in terms of efficient parameter utilization, fast convergence, and scalability.

Recent research in ultra-reliable and low latency communications (URLLC) for future wireless systems has spurred interest in short block-length codes. In this context, we analyze arbitrary harmonic bandwidth (BW) expansions for a class of high-dimension constant curvature curve codes for analog error correction of independent continuous-alphabet uniform sources. In particular, we employ the circumradius function from knot theory to prescribe insulating tubes about the centerline of constant curvature curves. We then use tube packing density within a hypersphere to optimize the curve parameters. The resulting constant curvature curve tube (C3T) codes possess the smallest possible latency, i.e., block-length is unity under BW expansion mapping. Further, the codes perform within $5$ dB signal-to-distortion ratio of the optimal performance theoretically achievable at a signal-to-noise ratio (SNR) $< -5$ dB for BW expansion factor $n \leq 10$. Furthermore, we propose a neural-network-based method to decode C3T codes. We show that, at low SNR, the neural-network-based C3T decoder outperforms the maximum likelihood and minimum mean-squared error decoders for all $n$. The best possible digital codes require two to three orders of magnitude higher latency compared to C3T codes, thereby demonstrating the latter's utility for URLLC.

Trusted execution environment (TEE) technology has found many applications in mitigating various security risks in an efficient manner, which is attractive for critical infrastructure protection. First, the natural of critical infrastructure requires it to be well protected from various cyber attacks. Second, performance is usually important for critical infrastructure and it cannot afford an expensive protection mechanism. While a large number of TEE-based critical infrastructure protection systems have been proposed to address various security challenges (e.g., secure sensing and reliable control), most existing works ignore one important feature, i.e., devices comprised the critical infrastructure may be equipped with multiple incompatible TEE technologies and belongs to different owners. This feature makes it hard for these devices to establish mutual trust and form a unified TEE environment. To address these challenges and fully unleash the potential of TEE technology for critical infrastructure protection, we propose DHTee, a decentralized coordination mechanism. DHTee uses blockchain technology to support key TEE functions in a heterogeneous TEE environment, especially the attestation service. A Device equipped with one TEE can interact securely with the blockchain to verify whether another potential collaborating device claiming to have a different TEE meets the security requirements. DHTee is also flexible and can support new TEE schemes without affecting devices using existing TEEs that have been supported by the system.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

北京阿比特科技有限公司