亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Considering the field of functional data analysis, we developed a new Bayesian method for variable selection in function-on-scalar regression (FOSR). Our approach uses latent variables, allowing an adaptive selection since it can determine the number of variables and which ones should be selected for a function-on-scalar regression model. Simulation studies show the proposed method's main properties, such as its accuracy in estimating the coefficients and high capacity to select variables correctly. Furthermore, we conducted comparative studies with the main competing methods, such as the BGLSS method as well as the group LASSO, the group MCP and the group SCAD. We also used a COVID-19 dataset and some socioeconomic data from Brazil for real data application. In short, the proposed Bayesian variable selection model is extremely competitive, showing significant predictive and selective quality.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · PCA · 正則化項 · Analysis · 統計量 ·
2023 年 8 月 2 日

Motivated by the increasing availability of data of functional nature, we develop a general probabilistic and statistical framework for extremes of regularly varying random elements $X$ in $L^2[0,1]$. We place ourselves in a Peaks-Over-Threshold framework where a functional extreme is defined as an observation $X$ whose $L^2$-norm $\|X\|$ is comparatively large. Our goal is to propose a dimension reduction framework resulting into finite dimensional projections for such extreme observations. Our contribution is double. First, we investigate the notion of Regular Variation for random quantities valued in a general separable Hilbert space, for which we propose a novel concrete characterization involving solely stochastic convergence of real-valued random variables. Second, we propose a notion of functional Principal Component Analysis (PCA) accounting for the principal `directions' of functional extremes. We investigate the statistical properties of the empirical covariance operator of the angular component of extreme functions, by upper-bounding the Hilbert-Schmidt norm of the estimation error for finite sample sizes. Numerical experiments with simulated and real data illustrate this work.

Interior point methods are widely used for different types of mathematical optimization problems. Many implementations of interior point methods in use today rely on direct linear solvers to solve systems of equations in each iteration. The need to solve ever larger optimization problems more efficiently and the rise of hardware accelerators for general purpose computing has led to a large interest in using iterative linear solvers instead, with the major issue being inevitable ill-conditioning of the linear systems arising as the optimization progresses. We investigate the use of Krylov solvers for interior point methods in solving optimization problems from radiation therapy. We implement a prototype interior point method using a so called doubly augmented formulation of the Karush-Kuhn-Tucker (KKT) linear system of equations, originally proposed by Forsgren and Gill, and evaluate its performance on real optimization problems from radiation therapy. Crucially, our implementation uses a preconditioned conjugate gradient method with Jacobi preconditioning internally. Our measurements of the conditioning of the linear systems indicate that the Jacobi preconditioner improves the conditioning of the systems to a degree that they can be solved iteratively, but there is room for further improvement in that regard. Furthermore, profiling of our prototype code shows that it is suitable for GPU acceleration, which may further improve its performance in practice. Overall, our results indicate that our method can find solutions of acceptable accuracy in reasonable time, even with a simple Jacobi preconditioner.

Few existing studies focus on the source separation problem with unknown numbers of signals, and how to evaluate the performances of the systems is not yet clear. We propose a solution with a fixed number of output channels to address these two problems, enabling it to avoid the dimensional disaster caused by the permutation problem induced by the alignment of outputs to targets. Specifically, we propose a two-step algorithm based on autoencoders and a new performance evaluation method for situations with mute channels. Experiments conducted on simulated mixtures of radiated ship noise show that the proposed solution can achieve similar separation performance to that attained with a known number of signals. The proposed algorithm achieved competitive performance as two algorithms developed for known numbers of signals, which is highly explainable and extensible and get the state of the art under this framework.

We present SEIF, a methodology that combines static analysis with symbolic execution to verify and explicate information flow paths in a hardware design. SEIF begins with a statically built model of the information flow through a design and uses guided symbolic execution to recognize and eliminate non-flows with high precision or to find corresponding paths through the design state for true flows. We evaluate SEIF on two open-source CPUs, an AES core, and the AKER access control module. SEIF can exhaustively explore 10-12 clock cycles deep in 4-6 seconds on average, and can automatically account for 86-90% of the paths in the statically built model. Additionally, SEIF can be used to find multiple violating paths for security properties, providing a new angle for security verification.

We develop a new technique for proving distribution testing lower bounds for properties defined by inequalities involving the bin probabilities of the distribution in question. Using this technique we obtain new lower bounds for monotonicity testing over discrete cubes and tight lower bounds for log-concavity testing. Our basic technique involves constructing a pair of moment-matching families of distributions by tweaking the probabilities of pairs of bins so that one family maintains the defining inequalities while the other violates them.

This note addresses the question of optimally estimating a linear functional of an object acquired through linear observations corrupted by random noise, where optimality pertains to a worst-case setting tied to a symmetric, convex, and closed model set containing the object. It complements the article "Statistical Estimation and Optimal Recovery" published in the Annals of Statistics in 1994. There, Donoho showed (among other things) that, for Gaussian noise, linear maps provide near-optimal estimation schemes relatively to a performance measure relevant in Statistical Estimation. Here, we advocate for a different performance measure arguably more relevant in Optimal Recovery. We show that, relatively to this new measure, linear maps still provide near-optimal estimation schemes even if the noise is merely log-concave. Our arguments, which make a connection to the deterministic noise situation and bypass properties specific to the Gaussian case, offer an alternative to parts of Donoho's proof.

Recently developed reduced-order modeling techniques aim to approximate nonlinear dynamical systems on low-dimensional manifolds learned from data. This is an effective approach for modeling dynamics in a post-transient regime where the effects of initial conditions and other disturbances have decayed. However, modeling transient dynamics near an underlying manifold, as needed for real-time control and forecasting applications, is complicated by the effects of fast dynamics and nonnormal sensitivity mechanisms. To begin to address these issues, we introduce a parametric class of nonlinear projections described by constrained autoencoder neural networks in which both the manifold and the projection fibers are learned from data. Our architecture uses invertible activation functions and biorthogonal weight matrices to ensure that the encoder is a left inverse of the decoder. We also introduce new dynamics-aware cost functions that promote learning of oblique projection fibers that account for fast dynamics and nonnormality. To demonstrate these methods and the specific challenges they address, we provide a detailed case study of a three-state model of vortex shedding in the wake of a bluff body immersed in a fluid, which has a two-dimensional slow manifold that can be computed analytically. In anticipation of future applications to high-dimensional systems, we also propose several techniques for constructing computationally efficient reduced-order models using our proposed nonlinear projection framework. This includes a novel sparsity-promoting penalty for the encoder that avoids detrimental weight matrix shrinkage via computation on the Grassmann manifold.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司