亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent empirical evidence indicates that transformer based in-context learning performs better when using a prefix language model (prefixLM), in which in-context samples can all attend to each other, compared to causal language models (causalLM), which use auto-regressive attention that prohibits in-context samples to attend to future samples. While this result is intuitive, it is not understood from a theoretical perspective. In this paper we take a theoretical approach and analyze the convergence behavior of prefixLM and causalLM under a certain parameter construction. Our analysis shows that both LM types converge to their stationary points at a linear rate, but that while prefixLM converges to the optimal solution of linear regression, causalLM convergence dynamics follows that of an online gradient descent algorithm, which is not guaranteed to be optimal even as the number of samples grows infinitely. We supplement our theoretical claims with empirical experiments over synthetic and real tasks and using various types of transformers. Our experiments verify that causalLM consistently underperforms prefixLM in all settings.

相關內容

We propose an approach to 3D reconstruction via inverse procedural modeling and investigate two variants of this approach. The first option consists in the fitting set of input parameters using a genetic algorithm. We demonstrate the results of our work on tree models, complex objects, with the reconstruction of which most existing methods cannot handle. The second option allows us to significantly improve the precision by using gradients within memetic algorithm, differentiable rendering and also differentiable procedural generators. In our work we see 2 main contributions. First, we propose a method to join differentiable rendering and inverse procedural modeling. This gives us an opportunity to reconstruct 3D model more accurately than existing approaches when a small number of input images are available (even for single image). Second, we join both differentiable and non-differentiable procedural generators in a single framework which allow us to apply inverse procedural modeling to fairly complex generators: when gradient is available, reconstructions is precise, when gradient is not available, reconstruction is approximate, but always high quality without visual artifacts.

We describe a new dependent-rounding algorithmic framework for bipartite graphs. Given a fractional assignment $y$ of values to edges of graph $G = (U \cup V, E)$, the algorithms return an integral solution $Y$ such that each right-node $v \in V$ has at most one neighboring edge $f$ with $Y_f = 1$, and where the variables $Y_e$ also satisfy broad nonpositive-correlation properties. In particular, for any edges $e_1, e_2$ sharing a left-node $u \in U$, the variables $Y_{e_1}, Y_{e_2}$ have strong negative-correlation properties, i.e. the expectation of $Y_{e_1} Y_{e_2}$ is significantly below $y_{e_1} y_{e_2}$. This algorithm is based on generating negatively-correlated Exponential random variables and using them in a contention-resolution scheme inspired by an algorithm Im & Shadloo (2020). Our algorithm gives stronger and much more flexible negative correlation properties. Dependent rounding schemes with negative correlation properties have been used for approximation algorithms for job-scheduling on unrelated machines to minimize weighted completion times (Bansal, Srinivasan, & Svensson (2021), Im & Shadloo (2020), Im & Li (2023)). Using our new dependent-rounding algorithm, among other improvements, we obtain a $1.4$-approximation for this problem. This significantly improves over the prior $1.45$-approximation ratio of Im & Li (2023).

We formulate and test a technique to use Emergent Communication (EC) with a pre-trained multilingual model to improve on modern Unsupervised NMT systems, especially for low-resource languages. It has been argued that the current dominant paradigm in NLP of pre-training on text-only corpora will not yield robust natural language understanding systems, and the need for grounded, goal-oriented, and interactive language learning has been high lighted. In our approach, we embed a multilingual model (mBART, Liu et al., 2020) into an EC image-reference game, in which the model is incentivized to use multilingual generations to accomplish a vision-grounded task. The hypothesis is that this will align multiple languages to a shared task space. We present two variants of EC Fine-Tuning (Steinert-Threlkeld et al., 2022), one of which outperforms a backtranslation-only baseline in all four languages investigated, including the low-resource language Nepali.

Manifold learning flows are a class of generative modelling techniques that assume a low-dimensional manifold description of the data. The embedding of such manifold into the high-dimensional space of the data is achieved via learnable invertible transformations. Therefore, once the manifold is properly aligned via a reconstruction loss, the probability density is tractable on the manifold and maximum likelihood can be used optimize the network parameters. Naturally, the lower-dimensional representation of the data requires an injective-mapping. Recent approaches were able to enforce that density aligns with the modelled manifold, while efficiently calculating the density volume-change term when embedding to the higher-dimensional space. However, unless the injective-mapping is analytically predefined, the learned manifold is not necessarily an efficient representation of the data. Namely, the latent dimensions of such models frequently learn an entangled intrinsic basis with degenerate information being stored in each dimension. Alternatively, if a locally orthogonal and/or sparse basis is to be learned, here coined canonical intrinsic basis, it can serve in learning a more compact latent space representation. Towards this end, we propose a canonical manifold learning flow method, where a novel optimization objective enforces the transformation matrix to have few prominent and orthogonal basis functions. Canonical manifold flow yields a more efficient use of the latent space, automatically generating fewer prominent and distinct dimensions to represent data, and consequently a better approximation of target distributions than other manifold flow methods in most experiments we conducted, resulting in lower FID scores.

A new mechanical model on noncircular shallow tunnelling considering initial stress field is proposed in this paper by constraining far-field ground surface to eliminate displacement singularity at infinity, and the originally unbalanced tunnel excavation problem in existing solutions is turned to an equilibrium one of mixed boundaries. By applying analytic continuation, the mixed boundaries are transformed to a homogenerous Riemann-Hilbert problem, which is subsequently solved via an efficient and accurate iterative method with boundary conditions of static equilibrium, displacement single-valuedness, and traction along tunnel periphery. The Lanczos filtering technique is used in the final stress and displacement solution to reduce the Gibbs phenomena caused by the constrained far-field ground surface for more accurte results. Several numerical cases are conducted to intensively verify the proposed solution by examining boundary conditions and comparing with existing solutions, and all the results are in good agreements. Then more numerical cases are conducted to investigate the stress and deformation distribution along ground surface and tunnel periphery, and several engineering advices are given. Further discussions on the defects of the proposed solution are also conducted for objectivity.

We present a new framework for modelling multivariate extremes, based on an angular-radial representation of the probability density function. Under this representation, the problem of modelling multivariate extremes is transformed to that of modelling an angular density and the tail of the radial variable, conditional on angle. Motivated by univariate theory, we assume that the tail of the conditional radial distribution converges to a generalised Pareto (GP) distribution. To simplify inference, we also assume that the angular density is continuous and finite and the GP parameter functions are continuous with angle. We refer to the resulting model as the semi-parametric angular-radial (SPAR) model for multivariate extremes. We consider the effect of the choice of polar coordinate system and introduce generalised concepts of angular-radial coordinate systems and generalised scalar angles in two dimensions. We show that under certain conditions, the choice of polar coordinate system does not affect the validity of the SPAR assumptions. However, some choices of coordinate system lead to simpler representations. In contrast, we show that the choice of margin does affect whether the model assumptions are satisfied. In particular, the use of Laplace margins results in a form of the density function for which the SPAR assumptions are satisfied for many common families of copula, with various dependence classes. We show that the SPAR model provides a more versatile framework for characterising multivariate extremes than provided by existing approaches, and that several commonly-used approaches are special cases of the SPAR model. Moreover, the SPAR framework provides a means of characterising all `extreme regions' of a joint distribution using a single inference. Applications in which this is useful are discussed.

Rational function approximations provide a simple but flexible alternative to polynomial approximation, allowing one to capture complex non-linearities without oscillatory artifacts. However, there have been few attempts to use rational functions on noisy data due to the likelihood of creating spurious singularities. To avoid the creation of singularities, we use Bernstein polynomials and appropriate conditions on their coefficients to force the denominator to be strictly positive. While this reduces the range of rational polynomials that can be expressed, it keeps all the benefits of rational functions while maintaining the robustness of polynomial approximation in noisy data scenarios. Our numerical experiments on noisy data show that existing rational approximation methods continually produce spurious poles inside the approximation domain. This contrasts our method, which cannot create poles in the approximation domain and provides better fits than a polynomial approximation and even penalized splines on functions with multiple variables. Moreover, guaranteeing pole-free in an interval is critical for estimating non-constant coefficients when numerically solving differential equations using spectral methods. This provides a compact representation of the original differential equation, allowing numeric solvers to achieve high accuracy quickly, as seen in our experiments.

We investigate the randomized decision tree complexity of a specific class of read-once threshold functions. A read-once threshold formula can be defined by a rooted tree, every internal node of which is labeled by a threshold function $T_k^n$ (with output 1 only when at least $k$ out of $n$ input bits are 1) and each leaf by a distinct variable. Such a tree defines a Boolean function in a natural way. We focus on the randomized decision tree complexity of such functions, when the underlying tree is a uniform tree with all its internal nodes labeled by the same threshold function. We prove lower bounds of the form $c(k,n)^d$, where $d$ is the depth of the tree. We also treat trees with alternating levels of AND and OR gates separately and show asymptotically optimal bounds, extending the known bounds for the binary case.

Nonignorable missing outcomes are common in real world datasets and often require strong parametric assumptions to achieve identification. These assumptions can be implausible or untestable, and so we may forgo them in favour of partially identified models that narrow the set of a priori possible values to an identification region. Here we propose a new nonparametric Bayes method that allows for the incorporation of multiple clinically relevant restrictions of the parameter space simultaneously. We focus on two common restrictions, instrumental variables and the direction of missing data bias, and investigate how these restrictions narrow the identification region for parameters of interest. Additionally, we propose a rejection sampling algorithm that allows us to quantify the evidence for these assumptions in the data. We compare our method to a standard Heckman selection model in both simulation studies and in an applied problem examining the effectiveness of cash-transfers for people experiencing homelessness.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

北京阿比特科技有限公司