Estimating 3D full-body pose from sparse sensor data is a pivotal technique employed for the reconstruction of realistic human motions in Augmented Reality and Virtual Reality. However, translating sparse sensor signals into comprehensive human motion remains a challenge since the sparsely distributed sensors in common VR systems fail to capture the motion of full human body. In this paper, we use well-designed Body Pose Graph (BPG) to represent the human body and translate the challenge into a prediction problem of graph missing nodes. Then, we propose a novel full-body motion reconstruction framework based on BPG. To establish BPG, nodes are initially endowed with features extracted from sparse sensor signals. Features from identifiable joint nodes across diverse sensors are amalgamated and processed from both temporal and spatial perspectives. Temporal dynamics are captured using the Temporal Pyramid Structure, while spatial relations in joint movements inform the spatial attributes. The resultant features serve as the foundational elements of the BPG nodes. To further refine the BPG, node features are updated through a graph neural network that incorporates edge reflecting varying joint relations. Our method's effectiveness is evidenced by the attained state-of-the-art performance, particularly in lower body motion, outperforming other baseline methods. Additionally, an ablation study validates the efficacy of each module in our proposed framework.
Large language models (LLMs) face a daunting challenge due to the excessive computational and memory requirements of the commonly used Transformer architecture. While state space model (SSM) is a new type of foundational network architecture offering lower computational complexity, their performance has yet to fully rival that of Transformers. This paper introduces DenseSSM, a novel approach to enhance the flow of hidden information between layers in SSMs. By selectively integrating shallowlayer hidden states into deeper layers, DenseSSM retains fine-grained information crucial for the final output. Dense connections enhanced DenseSSM still maintains the training parallelizability and inference efficiency. The proposed method can be widely applicable to various SSM types like RetNet and Mamba. With similar model size, DenseSSM achieves significant improvements, exemplified by DenseRetNet outperforming the original RetNet with up to 5% accuracy improvement on public benchmarks. code is avalaible at //github.com/WailordHe/DenseSSM
In the task of Learning from Label Proportions (LLP), a model is trained on groups (a.k.a bags) of instances and their corresponding label proportions to predict labels for individual instances. LLP has been applied pre-dominantly on two types of datasets - image and tabular. In image LLP, bags of fixed size are created by randomly sampling instances from an underlying dataset. Bags created via this methodology are called random bags. Experimentation on Image LLP has been mostly on random bags on CIFAR-* and MNIST datasets. Despite being a very crucial task in privacy sensitive applications, tabular LLP does not yet have a open, large scale LLP benchmark. One of the unique properties of tabular LLP is the ability to create feature bags where all the instances in a bag have the same value for a given feature. It has been shown in prior research that feature bags are very common in practical, real world applications [Chen et. al '23, Saket et. al. '22]. In this paper, we address the lack of a open, large scale tabular benchmark. First we propose LLP-Bench, a suite of 70 LLP datasets (62 feature bag and 8 random bag datasets) created from the Criteo CTR prediction and the Criteo Sponsored Search Conversion Logs datasets, the former a classification and the latter a regression dataset. These LLP datasets represent diverse ways in which bags can be constructed from underlying tabular data. To the best of our knowledge, LLP-Bench is the first large scale tabular LLP benchmark with an extensive diversity in constituent datasets. Second, we propose four metrics that characterize and quantify the hardness of a LLP dataset. Using these four metrics we present deep analysis of the 62 feature bag datasets in LLP-Bench. Finally we present the performance of 9 SOTA and popular tabular LLP techniques on all the 62 datasets.
3D human pose estimation from a single image is still a challenging problem despite the large amount of work that has been performed in this field. Generally, most methods directly use neural networks and ignore certain constraints (e.g., reprojection constraints, joint angle, and bone length constraints). While a few methods consider these constraints but train the network separately, they cannot effectively solve the depth ambiguity problem. In this paper, we propose a GAN-based model for 3D human pose estimation, in which a reprojection network is employed to learn the mapping of the distribution from 3D poses to 2D poses, and a discriminator is employed for 2D-3D consistency discrimination. We adopt a novel strategy to synchronously train the generator, the reprojection network and the discriminator. Furthermore, inspired by the typical kinematic chain space (KCS) matrix, we introduce a weighted KCS matrix and take it as one of the discriminator's inputs to impose joint angle and bone length constraints. The experimental results on Human3.6M show that our method significantly outperforms state-of-the-art methods in most cases.
Model merging is to combine fine-tuned models derived from multiple domains, with the intent of enhancing the model's proficiency across various domains. The principal concern is the resolution of parameter conflicts. A substantial amount of existing research remedy this issue during the merging stage, with the latest study focusing on resolving this issue throughout the pruning stage. The DARE approach has exhibited promising outcomes when applied to a simplistic fine-tuned model. However, the efficacy of this method tends to wane when employed on complex fine-tuned models that show a significant parameter bias relative to the baseline model. In this paper, we introduce a dual-stage method termed Dynamic Pruning Partition Amplification (DPPA), devised to tackle the challenge of merging complex fine-tuned models. Initially, we introduce Dynamically Pruning (DP), an improved approach based on magnitude pruning, which aim is to enhance performance at higher pruning rates. Subsequently, we propose Dynamically Partition Amplification (DPA), a rescaling strategy, is designed to dynamically amplify parameter partitions in relation to their significance levels. The experimental results show that our method maintains a mere 20% of domain-specific parameters and yet delivers a performance comparable to other methodologies that preserve up to 90% of parameters. Furthermore, our method displays outstanding performance post-pruning, leading to a significant improvement of nearly 20% performance in model merging. We make our code on Github.
The hybrid nature of multi-contact robotic systems, due to making and breaking contact with the environment, creates significant challenges for high-quality control. Existing model-based methods typically rely on either good prior knowledge of the multi-contact model or require significant offline model tuning effort, thus resulting in low adaptability and robustness. In this paper, we propose a real-time adaptive multi-contact model predictive control framework, which enables online adaption of the hybrid multi-contact model and continuous improvement of the control performance for contact-rich tasks. This framework includes an adaption module, which continuously learns a residual of the hybrid model to minimize the gap between the prior model and reality, and a real-time multi-contact MPC controller. We demonstrated the effectiveness of the framework in synthetic examples, and applied it on hardware to solve contact-rich manipulation tasks, where a robot uses its end-effector to roll different unknown objects on a table to track given paths. The hardware experiments show that with a rough prior model, the multi-contact MPC controller adapts itself on-the-fly with an adaption rate around 20 Hz and successfully manipulates previously unknown objects with non-smooth surface geometries.
Self-supervised learned models have been found to be very effective for certain speech tasks such as automatic speech recognition, speaker identification, keyword spotting and others. While the features are undeniably useful in speech recognition and associated tasks, their utility in speech enhancement systems is yet to be firmly established, and perhaps not properly understood. In this paper, we investigate the uses of SSL representations for single-channel speech enhancement in challenging conditions and find that they add very little value for the enhancement task. Our constraints are designed around on-device real-time speech enhancement -- model is causal, the compute footprint is small. Additionally, we focus on low SNR conditions where such models struggle to provide good enhancement. In order to systematically examine how SSL representations impact performance of such enhancement models, we propose a variety of techniques to utilize these embeddings which include different forms of knowledge-distillation and pre-training.
Learning with rejection has been a prototypical model for studying the human-AI interaction on prediction tasks. Upon the arrival of a sample instance, the model first uses a rejector to decide whether to accept and use the AI predictor to make a prediction or reject and defer the sample to humans. Learning such a model changes the structure of the original loss function and often results in undesirable non-convexity and inconsistency issues. For the classification with rejection problem, several works develop consistent surrogate losses for the joint learning of the predictor and the rejector, while there have been fewer works for the regression counterpart. This paper studies the regression with rejection (RwR) problem and investigates a no-rejection learning strategy that uses all the data to learn the predictor. We first establish the consistency for such a strategy under the weak realizability condition. Then for the case without the weak realizability, we show that the excessive risk can also be upper bounded with the sum of two parts: prediction error and calibration error. Lastly, we demonstrate the advantage of such a proposed learning strategy with empirical evidence.
Most models for weakly supervised video anomaly detection (WS-VAD) rely on multiple instance learning, aiming to distinguish normal and abnormal snippets without specifying the type of anomaly. The ambiguous nature of anomaly definitions across contexts introduces bias in detecting abnormal and normal snippets within the abnormal bag. Taking the first step to show the model why it is anomalous, a novel framework is proposed to guide the learning of suspected anomalies from event prompts. Given a textual prompt dictionary of potential anomaly events and the captions generated from anomaly videos, the semantic anomaly similarity between them could be calculated to identify the suspected anomalous events for each video snippet. It enables a new multi-prompt learning process to constrain the visual-semantic features across all videos, as well as provides a new way to label pseudo anomalies for self-training. To demonstrate effectiveness, comprehensive experiments and detailed ablation studies are conducted on four datasets, namely XD-Violence, UCF-Crime, TAD, and ShanghaiTech. Our proposed model outperforms most state-of-the-art methods in terms of AP or AUC (82.6\%, 87.7\%, 93.1\%, and 97.4\%). Furthermore, it shows promising performance in open-set and cross-dataset cases.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.