Various applications which run on the machines in a network such as Internet-of-Things require different bandwidths. So each machine may select one of its multiple Radio Frequency (RF) interfaces for machine-to-machine or machine-to base-station communications according to required bandwidth. We have proposed a generalized framework for joint dynamic optimal RF interface setting and next-hop selection, which is suitable for networks with multiple base stations, and source nodes that have the same requests for bandwidth. Simulation results show average data rate of the source nodes may be increased up to 117%.
Device-to-device (D2D) communications is expected to be a critical enabler of distributed computing in edge networks at scale. A key challenge in providing this capability is the requirement for judicious management of the heterogeneous communication and computation resources that exist at the edge to meet processing needs. In this paper, we develop an optimization methodology that considers the network topology jointly with device and network resource allocation to minimize total D2D overhead, which we quantify in terms of time and energy required for task processing. Variables in our model include task assignment, CPU allocation, subchannel selection, and beamforming design for multiple-input multiple-output (MIMO) wireless devices. We propose two methods to solve the resulting non-convex mixed integer program: semi-exhaustive search optimization, which represents a "best-effort" at obtaining the optimal solution, and efficient alternate optimization, which is more computationally efficient. As a component of these two methods, we develop a novel coordinated beamforming algorithm which we show obtains the optimal beamformer for a common receiver characteristic. Through numerical experiments, we find that our methodology yields substantial improvements in network overhead compared with local computation and partially optimized methods, which validates our joint optimization approach. Further, we find that the efficient alternate optimization scales well with the number of nodes, and thus can be a practical solution for D2D computing in large networks.
Until recently, applications of neural networks in machine learning have almost exclusively relied on real-valued networks. It was recently observed, however, that complex-valued neural networks (CVNNs) exhibit superior performance in applications in which the input is naturally complex-valued, such as MRI fingerprinting. While the mathematical theory of real-valued networks has, by now, reached some level of maturity, this is far from true for complex-valued networks. In this paper, we analyze the expressivity of complex-valued networks by providing explicit quantitative error bounds for approximating $C^n$ functions on compact subsets of $\mathbb{C}^d$ by complex-valued neural networks that employ the modReLU activation function, given by $\sigma(z) = \mathrm{ReLU}(|z| - 1) \, \mathrm{sgn} (z)$, which is one of the most popular complex activation functions used in practice. We show that the derived approximation rates are optimal (up to log factors) in the class of modReLU networks with weights of moderate growth.
Federated Learning (FL) is a collaborative machine learning technique to train a global model without obtaining clients' private data. The main challenges in FL are statistical diversity among clients, limited computing capability among clients' equipments, and the excessive communication overhead between servers and clients. To address these challenges, we propose a novel sparse personalized federated learning scheme via maximizing correlation FedMac. By incorporating an approximated L1-norm and the correlation between client models and global model into standard FL loss function, the performance on statistical diversity data is improved and the communicational and computational loads required in the network are reduced compared with non-sparse FL. Convergence analysis shows that the sparse constraints in FedMac do not affect the convergence rate of the global model, and theoretical results show that FedMac can achieve good sparse personalization, which is better than the personalized methods based on L2-norm. Experimentally, we demonstrate the benefits of this sparse personalization architecture compared with the state-of-the-art personalization methods (e.g. FedMac respectively achieves 98.95%, 99.37%, 90.90% and 89.06% accuracy on the MNIST, FMNIST, CIFAR-100 and Synthetic datasets under non-i.i.d. variants).
Internet-of-Things (IoT) technology is envisioned to enable a variety of real-time applications by interconnecting billions of sensors/devices deployed to observe some random physical processes. These IoT devices rely on low-power wide-area wireless connectivity for transmitting, mostly fixed- but small-size, status updates of their associated random processes. The cellular networks are seen as a natural candidate for providing reliable wireless connectivity to IoT devices. However, the conventional orthogonal multiple access (OMA) to these massive number of devices is expected to degrade the spectral efficiency. As a promising alternative to OMA, the cellular base stations (BSs) can employ non-orthogonal multiple access (NOMA) for the uplink transmissions of mobile users and IoT devices. In particular, the uplink NOMA can be configured such that the mobile user can adapt transmission rate based on its channel condition while the IoT device transmits at a fixed rate. For this setting, we analyze the ergodic capacity of mobile users and the mean local delay of IoT devices using stochastic geometry. Our analysis demonstrates that the above NOMA configuration can provide better ergodic capacity for mobile users compare to OMA when IoT devices' delay constraint is strict. Furthermore, we also show that NOMA can support a larger packet size for IoT devices than OMA under the same delay constraint.
The Robust Markov Decision Process (RMDP) framework focuses on designing control policies that are robust against the parameter uncertainties due to the mismatches between the simulator model and real-world settings. An RMDP problem is typically formulated as a max-min problem, where the objective is to find the policy that maximizes the value function for the worst possible model that lies in an uncertainty set around a nominal model. The standard robust dynamic programming approach requires the knowledge of the nominal model for computing the optimal robust policy. In this work, we propose a model-based reinforcement learning (RL) algorithm for learning an $\epsilon$-optimal robust policy when the nominal model is unknown. We consider three different forms of uncertainty sets, characterized by the total variation distance, chi-square divergence, and KL divergence. For each of these uncertainty sets, we give a precise characterization of the sample complexity of our proposed algorithm. In addition to the sample complexity results, we also present a formal analytical argument on the benefit of using robust policies. Finally, we demonstrate the performance of our algorithm on two benchmark problems.
Interest in unmanned aerial system (UAS) powered solutions for 6G communication networks has grown immensely with the widespread availability of machine learning based autonomy modules and embedded graphical processing units (GPUs). While these technologies have revolutionized the possibilities of UAS solutions, designing an operable, robust autonomy framework for UAS remains a multi-faceted and difficult problem. In this work, we present our novel, modular framework for UAS autonomy, entitled MR-iFLY, and discuss how it may be extended to enable 6G swarm solutions. We begin by detailing the challenges associated with machine learning based UAS autonomy on resource constrained devices. Next, we describe in depth, how MR-iFLY's novel depth estimation and collision avoidance technology meets these challenges. Lastly, we describe the various evaluation criteria we have used to measure performance, show how our optimized machine vision components provide up to 15X speedup over baseline models and present a flight demonstration video of MR-iFLY's vision-based collision avoidance technology. We argue that these empirical results substantiate MR-iFLY as a candidate for use in reducing communication overhead between nodes in 6G communication swarms by providing standalone collision avoidance and navigation capabilities.
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.
Neural networks have succeeded in many reasoning tasks. Empirically, these tasks require specialized network structures, e.g., Graph Neural Networks (GNNs) perform well on many such tasks, but less structured networks fail. Theoretically, there is limited understanding of why and when a network structure generalizes better than others, although they have equal expressive power. In this paper, we develop a framework to characterize which reasoning tasks a network can learn well, by studying how well its computation structure aligns with the algorithmic structure of the relevant reasoning process. We formally define this algorithmic alignment and derive a sample complexity bound that decreases with better alignment. This framework offers an explanation for the empirical success of popular reasoning models, and suggests their limitations. As an example, we unify seemingly different reasoning tasks, such as intuitive physics, visual question answering, and shortest paths, via the lens of a powerful algorithmic paradigm, dynamic programming (DP). We show that GNNs align with DP and thus are expected to solve these tasks. On several reasoning tasks, our theory is supported by empirical results.
Because of continuous advances in mathematical programing, Mix Integer Optimization has become a competitive vis-a-vis popular regularization method for selecting features in regression problems. The approach exhibits unquestionable foundational appeal and versatility, but also poses important challenges. We tackle these challenges, reducing computational burden when tuning the sparsity bound (a parameter which is critical for effectiveness) and improving performance in the presence of feature collinearity and of signals that vary in nature and strength. Importantly, we render the approach efficient and effective in applications of realistic size and complexity - without resorting to relaxations or heuristics in the optimization, or abandoning rigorous cross-validation tuning. Computational viability and improved performance in subtler scenarios is achieved with a multi-pronged blueprint, leveraging characteristics of the Mixed Integer Programming framework and by means of whitening, a data pre-processing step.
In this paper, we propose to tackle the problem of reducing discrepancies between multiple domains referred to as multi-source domain adaptation and consider it under the target shift assumption: in all domains we aim to solve a classification problem with the same output classes, but with labels' proportions differing across them. We design a method based on optimal transport, a theory that is gaining momentum to tackle adaptation problems in machine learning due to its efficiency in aligning probability distributions. Our method performs multi-source adaptation and target shift correction simultaneously by learning the class probabilities of the unlabeled target sample and the coupling allowing to align two (or more) probability distributions. Experiments on both synthetic and real-world data related to satellite image segmentation task show the superiority of the proposed method over the state-of-the-art.