亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Named Entity Recognition and Relation Extraction are two crucial and challenging subtasks in the field of Information Extraction. Despite the successes achieved by the traditional approaches, fundamental research questions remain open. First, most recent studies use parameter sharing for a single subtask or shared features for both two subtasks, ignoring their semantic differences. Second, information interaction mainly focuses on the two subtasks, leaving the fine-grained informtion interaction among the subtask-specific features of encoding subjects, relations, and objects unexplored. Motivated by the aforementioned limitations, we propose a novel model to jointly extract entities and relations. The main novelties are as follows: (1) We propose to decouple the feature encoding process into three parts, namely encoding subjects, encoding objects, and encoding relations. Thanks to this, we are able to use fine-grained subtask-specific features. (2) We propose novel inter-aggregation and intra-aggregation strategies to enhance the information interaction and construct individual fine-grained subtask-specific features, respectively. The experimental results demonstrate that our model outperforms several previous state-of-the-art models. Extensive additional experiments further confirm the effectiveness of our model.

相關內容

Prompting and Multiple Choices Questions (MCQ) have become the preferred approach to assess the capabilities of Large Language Models (LLMs), due to their ease of manipulation and evaluation. Such experimental appraisals have pointed toward the LLMs' apparent ability to perform causal reasoning or to grasp uncertainty. In this paper, we investigate whether these abilities are measurable outside of tailored prompting and MCQ by reformulating these issues as direct text completion - the foundation of LLMs. To achieve this goal, we define scenarios with multiple possible outcomes and we compare the prediction made by the LLM through prompting (their Stated Answer) to the probability distributions they compute over these outcomes during next token prediction (their Revealed Belief). Our findings suggest that the Revealed Belief of LLMs significantly differs from their Stated Answer and hint at multiple biases and misrepresentations that their beliefs may yield in many scenarios and outcomes. As text completion is at the core of LLMs, these results suggest that common evaluation methods may only provide a partial picture and that more research is needed to assess the extent and nature of their capabilities.

The rapid development of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) has exposed vulnerabilities to various adversarial attacks. This paper provides a comprehensive overview of jailbreaking research targeting both LLMs and MLLMs, highlighting recent advancements in evaluation benchmarks, attack techniques and defense strategies. Compared to the more advanced state of unimodal jailbreaking, multimodal domain remains underexplored. We summarize the limitations and potential research directions of multimodal jailbreaking, aiming to inspire future research and further enhance the robustness and security of MLLMs.

We develop new approximate compilation schemes that significantly reduce the expense of compiling the Quantum Approximate Optimization Algorithm (QAOA) for solving the Max-Cut problem. Our main focus is on compilation with trapped-ion simulators using Pauli-$X$ operations and all-to-all Ising Hamiltonian $H_\text{Ising}$ evolution generated by Molmer-Sorensen or optical dipole force interactions, though some of our results also apply to standard gate-based compilations. Our results are based on principles of graph sparsification and decomposition; the former reduces the number of edges in a graph while maintaining its cut structure, while the latter breaks a weighted graph into a small number of unweighted graphs. Though these techniques have been used as heuristics in various hybrid quantum algorithms, there have been no guarantees on their performance, to the best of our knowledge. This work provides the first provable guarantees using sparsification and decomposition to improve quantum noise resilience and reduce quantum circuit complexity. For quantum hardware that uses edge-by-edge QAOA compilations, sparsification leads to a direct reduction in circuit complexity. For trapped-ion quantum simulators implementing all-to-all $H_\text{Ising}$ pulses, we show that for a $(1-\epsilon)$ factor loss in the Max-Cut approximation ($\epsilon>0)$, our compilations improve the (worst-case) number of $H_\text{Ising}$ pulses from $O(n^2)$ to $O(n\log(n/\epsilon))$ and the (worst-case) number of Pauli-$X$ bit flips from $O(n^2)$ to $O\left(\frac{n\log(n/\epsilon)}{\epsilon^2}\right)$ for $n$-node graphs. We demonstrate significant reductions in noise are obtained in our new compilation approaches using theory and numerical calculations for trapped-ion hardware. We anticipate these approximate compilation techniques will be useful tools in a variety of future quantum computing experiments.

We obtain a new universal approximation theorem for continuous operators on arbitrary Banach spaces using the Leray-Schauder mapping. Moreover, we introduce and study a method for operator learning in Banach spaces $L^p$ of functions with multiple variables, based on orthogonal projections on polynomial bases. We derive a universal approximation result for operators where we learn a linear projection and a finite dimensional mapping under some additional assumptions. For the case of $p=2$, we give some sufficient conditions for the approximation results to hold. This article serves as the theoretical framework for a deep learning methodology whose implementation will be provided in subsequent work.

We provide both a theoretical and empirical analysis of the Mean-Median Difference (MM) and Partisan Bias (PB), which are both symmetry metrics intended to detect gerrymandering. We consider vote-share, seat-share pairs $(V, S)$ for which one can construct election data having vote share $V$ and seat share $S$, and turnout is equal in each district. We calculate the range of values that MM and PB can achieve on that constructed election data. In the process, we find the range of vote-share, seat share pairs $(V, S)$ for which there is constructed election data with vote share $V$, seat share $S$, and $MM=0$, and see that the corresponding range for PB is the same set of $(V,S)$ pairs. We show how the set of such $(V,S)$ pairs allowing for $MM=0$ (and $PB=0$) changes when turnout in each district is allowed to be different. Although the set of $(V,S)$ pairs for which there is election data with $MM=0$ is the same as the set of $(V,S)$ pairs for which there is election data with $PB=0$, the range of possible values for MM and PB on a fixed $(V, S)$ is different. Additionally, for a fixed constructed election outcome, the values of the Mean-Median Difference and Partisan Bias can theoretically be as large as 0.5. We show empirically that these two metric values can differ by as much as 0.33 in US congressional map data. We use both neutral ensemble analysis and the short-burst method to show that neither the Mean-Median Difference nor the Partisan Bias can reliably detect when a districting map has an extreme number of districts won by a particular party. Finally, we give additional empirical and logical arguments in an attempt to explain why other metrics are better at detecting when a districting map has an extreme number of districts won by a particular party.

The moments of the coefficients of elliptic curve L-functions are related to numerous arithmetic problems. Rosen and Silverman proved a conjecture of Nagao relating the first moment of one-parameter families satisfying Tate's conjecture to the rank of the corresponding elliptic surface over Q(T); one can also construct families of moderate rank by finding families with large first moments. Michel proved that if j(T) is not constant, then the second moment of the family is of size p^2 + O(p^(3/2)); these two moments show that for suitably small support the behavior of zeros near the central point agree with that of eigenvalues from random matrix ensembles, with the higher moments impacting the rate of convergence. In his thesis, Miller noticed a negative bias in the second moment of every one-parameter family of elliptic curves over the rationals whose second moment had a calculable closed-form expression, specifically the first lower order term which does not average to zero is on average negative. This Bias Conjecture is confirmed for many families; however, these are highly non-generic families whose resulting Legendre sums can be determined. Inspired by the recent successes by Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver, Alexey Pozdnyakov and others in investigations of murmurations of elliptic curve coefficients with machine learning techniques, we pose a similar problem for trying to understand the Bias Conjecture. As a start to this program, we numerically investigate the Bias Conjecture for a family whose bias is positive for half the primes. Since the numerics do not offer conclusive evidence that negative bias for the other half is enough to overwhelm the positive bias, the Bias Conjecture cannot be verified for the family.

Segmentation models for brain lesions in MRI are commonly developed for a specific disease and trained on data with a predefined set of MRI modalities. Each such model cannot segment the disease using data with a different set of MRI modalities, nor can it segment any other type of disease. Moreover, this training paradigm does not allow a model to benefit from learning from heterogeneous databases that may contain scans and segmentation labels for different types of brain pathologies and diverse sets of MRI modalities. Is it feasible to use Federated Learning (FL) for training a single model on client databases that contain scans and labels of different brain pathologies and diverse sets of MRI modalities? We demonstrate promising results by combining appropriate, simple, and practical modifications to the model and training strategy: Designing a model with input channels that cover the whole set of modalities available across clients, training with random modality drop, and exploring the effects of feature normalization methods. Evaluation on 7 brain MRI databases with 5 different diseases shows that such FL framework can train a single model that is shown to be very promising in segmenting all disease types seen during training. Importantly, it is able to segment these diseases in new databases that contain sets of modalities different from those in training clients. These results demonstrate, for the first time, feasibility and effectiveness of using FL to train a single segmentation model on decentralised data with diverse brain diseases and MRI modalities, a necessary step towards leveraging heterogeneous real-world databases. Code will be made available at: //github.com/FelixWag/FL-MultiDisease-MRI

Cooperative Multi-Agent Reinforcement Learning (MARL) algorithms, trained only to optimize task reward, can lead to a concentration of power where the failure or adversarial intent of a single agent could decimate the reward of every agent in the system. In the context of teams of people, it is often useful to explicitly consider how power is distributed to ensure no person becomes a single point of failure. Here, we argue that explicitly regularizing the concentration of power in cooperative RL systems can result in systems which are more robust to single agent failure, adversarial attacks, and incentive changes of co-players. To this end, we define a practical pairwise measure of power that captures the ability of any co-player to influence the ego agent's reward, and then propose a power-regularized objective which balances task reward and power concentration. Given this new objective, we show that there always exists an equilibrium where every agent is playing a power-regularized best-response balancing power and task reward. Moreover, we present two algorithms for training agents towards this power-regularized objective: Sample Based Power Regularization (SBPR), which injects adversarial data during training; and Power Regularization via Intrinsic Motivation (PRIM), which adds an intrinsic motivation to regulate power to the training objective. Our experiments demonstrate that both algorithms successfully balance task reward and power, leading to lower power behavior than the baseline of task-only reward and avoid catastrophic events in case an agent in the system goes off-policy.

Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

北京阿比特科技有限公司