亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop a boundary integral equation-based numerical method to solve for the electrostatic potential in two dimensions, inside a medium with piecewise constant conductivity, where the boundary condition is given by the complete electrode model (CEM). The CEM is seen as the most accurate model of the physical setting where electrodes are placed on the surface of an electrically conductive body, and currents are injected through the electrodes and the resulting voltages are measured again on these same electrodes. The integral equation formulation is based on expressing the electrostatic potential as the solution to a finite number of Laplace equations which are coupled through boundary matching conditions. This allows us to re-express the solution in terms of single layer potentials; the problem is thus re-cast as a system of integral equations on a finite number of smooth curves. We discuss an adaptive method for the solution of the resulting system of mildly singular integral equations. This solver is both fast and accurate. We then present a numerical inverse solver for electrical impedance tomography (EIT) which uses our forward solver at its core. To demonstrate the applicability of our results we test our numerical methods on an open electrical impedance tomography data set provided by the Finnish Inverse Problems Society.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

The stability of nonlinear waves on spatially extended domains is commonly probed by computing the spectrum of the linearization of the underlying PDE about the wave profile. It is known that convective transport, whether driven by the nonlinear pattern itself or an underlying fluid flow, can cause exponential growth of the resolvent of the linearization as a function of the domain length. In particular, sparse eigenvalue algorithms may result in inaccurate and spurious spectra in the convective regime. In this work, we focus on spiral waves, which arise in many natural processes and which exhibit convective transport. We prove that exponential weights can serve as effective, inexpensive preconditioners that result in resolvents that are uniformly bounded in the domain size and that stabilize numerical spectral computations. We also show that the optimal exponential rates can be computed reliably from a simpler asymptotic problem posed in one space dimension.

We discuss a system of stochastic differential equations with a stiff linear term and additive noise driven by fractional Brownian motions (fBms) with Hurst parameter H>1/2, which arise e. g., from spatial approximations of stochastic partial differential equations. For their numerical approximation, we present an exponential Euler scheme and show that it converges in the strong sense with an exact rate close to the Hurst parameter H. Further, based on (E. Buckwar, M.G. Riedler, and P.E. Kloeden 2011), we conclude the existence of a unique stationary solution of the exponential Euler scheme that is pathwise asymptotically stable.

Quantum-inspired classical algorithms provide us with a new way to understand the computational power of quantum computers for practically-relevant problems, especially in machine learning. In the past several years, numerous efficient algorithms for various tasks have been found, while an analysis of lower bounds is still missing. Using communication complexity, in this work we propose the first method to study lower bounds for these tasks. We mainly focus on lower bounds for solving linear regressions, supervised clustering, principal component analysis, recommendation systems, and Hamiltonian simulations. For those problems, we prove a quadratic lower bound in terms of the Frobenius norm of the underlying matrix. As quantum algorithms are linear in the Frobenius norm for those problems, our results mean that the quantum-classical separation is at least quadratic. As a generalisation, we extend our method to study lower bounds analysis of quantum query algorithms for matrix-related problems using quantum communication complexity. Some applications are given.

We consider a control-constrained optimal control problem subject to time-harmonic Maxwell's equations; the control variable belongs to a finite-dimensional set and enters the state equation as a coefficient. We derive existence of optimal solutions, and analyze first- and second-order optimality conditions. We devise an approximation scheme based on the lowest order N\'ed\'elec finite elements to approximate optimal solutions. We analyze convergence properties of the proposed scheme and prove a priori error estimates. We also design an a posteriori error estimator that can be decomposed as the sum two contributions related to the discretization of the state and adjoint equations, and prove that the devised error estimator is reliable and locally efficient. We perform numerical tests in order to assess the performance of the devised discretization strategy and the a posteriori error estimator.

This article presents a high-order accurate numerical method for the evaluation of singular volume integral operators, with attention focused on operators associated with the Poisson and Helmholtz equations in two dimensions. Following the ideas of the density interpolation method for boundary integral operators, the proposed methodology leverages Green's third identity and a local polynomial interpolant of the density function to recast the volume potential as a sum of single- and double-layer potentials and a volume integral with a regularized (bounded or smoother) integrand. The layer potentials can be accurately and efficiently evaluated everywhere in the plane by means of existing methods (e.g. the density interpolation method), while the regularized volume integral can be accurately evaluated by applying elementary quadrature rules. Compared to straightforwardly computing corrections for every singular and nearly-singular volume target, the method significantly reduces the amount of required specialized quadrature by pushing all singular and near-singular corrections to near-singular layer-potential evaluations at target points in a small neighborhood of the domain boundary. Error estimates for the regularization and quadrature approximations are provided. The method is compatible with well-established fast algorithms, being both efficient not only in the online phase but also to set-up. Numerical examples demonstrate the high-order accuracy and efficiency of the proposed methodology; applications to inhomogeneous scattering are presented.

We propose a novel score-based particle method for solving the Landau equation in plasmas, that seamlessly integrates learning with structure-preserving particle methods [arXiv:1910.03080]. Building upon the Lagrangian viewpoint of the Landau equation, a central challenge stems from the nonlinear dependence of the velocity field on the density. Our primary innovation lies in recognizing that this nonlinearity is in the form of the score function, which can be approximated dynamically via techniques from score-matching. The resulting method inherits the conservation properties of the deterministic particle method while sidestepping the necessity for kernel density estimation in [arXiv:1910.03080]. This streamlines computation and enhances scalability with dimensionality. Furthermore, we provide a theoretical estimate by demonstrating that the KL divergence between our approximation and the true solution can be effectively controlled by the score-matching loss. Additionally, by adopting the flow map viewpoint, we derive an update formula for exact density computation. Extensive examples have been provided to show the efficiency of the method, including a physically relevant case of Coulomb interaction.

This overview is devoted to splitting methods, a class of numerical integrators intended for differential equations that can be subdivided into different problems easier to solve than the original system. Closely connected with this class of integrators are composition methods, in which one or several low-order schemes are composed to construct higher-order numerical approximations to the exact solution. We analyze in detail the order conditions that have to be satisfied by these classes of methods to achieve a given order, and provide some insight about their qualitative properties in connection with geometric numerical integration and the treatment of highly oscillatory problems. Since splitting methods have received considerable attention in the realm of partial differential equations, we also cover this subject in the present survey, with special attention to parabolic equations and their problems. An exhaustive list of methods of different orders is collected and tested on simple examples. Finally, some applications of splitting methods in different areas, ranging from celestial mechanics to statistics, are also provided.

It is well-known that the Fourier-Galerkin spectral method has been a popular approach for the numerical approximation of the deterministic Boltzmann equation with spectral accuracy rigorously proved. In this paper, we will show that such a spectral convergence of the Fourier-Galerkin spectral method also holds for the Boltzmann equation with uncertainties arising from both collision kernel and initial condition. Our proof is based on newly-established spaces and norms that are carefully designed and take the velocity variable and random variables with their high regularities into account altogether. For future studies, this theoretical result will provide a solid foundation for further showing the convergence of the full-discretized system where both the velocity and random variables are discretized simultaneously.

In this paper, we study the Boltzmann equation with uncertainties and prove that the spectral convergence of the semi-discretized numerical system holds in a combined velocity and random space, where the Fourier-spectral method is applied for approximation in the velocity space whereas the generalized polynomial chaos (gPC)-based stochastic Galerkin (SG) method is employed to discretize the random variable. Our proof is based on a delicate energy estimate for showing the well-posedness of the numerical solution as well as a rigorous control of its negative part in our well-designed functional space that involves high-order derivatives of both the velocity and random variables. This paper rigorously justifies the statement proposed in [Remark 4.4, J. Hu and S. Jin, J. Comput. Phys., 315 (2016), pp. 150-168].

This research aims to estimate three parameters in a stochastic generalized logistic differential equation. We assume the intrinsic growth rate and shape parameters are constant but unknown. To estimate these two parameters, we use the maximum likelihood method and establish that the estimators for these two parameters are strongly consistent. We estimate the diffusion parameter by using the quadratic variation processes. To test our results, we evaluate two data scenarios, complete and incomplete, with fixed values assigned to the three parameters. In the incomplete data scenario, we apply an Expectation Maximization algorithm.

北京阿比特科技有限公司