亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Existing knowledge distillation methods generally use a teacher-student approach, where the student network solely learns from a well-trained teacher. However, this approach overlooks the inherent differences in learning abilities between the teacher and student networks, thus causing the capacity-gap problem. To address this limitation, we propose a novel method called SLKD.

相關內容

We consider a collaborative learning setting where the goal of each agent is to improve their own model by leveraging the expertise of collaborators, in addition to their own training data. To facilitate the exchange of expertise among agents, we propose a distillation-based method leveraging shared unlabeled auxiliary data, which is pseudo-labeled by the collective. Central to our method is a trust weighting scheme that serves to adaptively weigh the influence of each collaborator on the pseudo-labels until a consensus on how to label the auxiliary data is reached. We demonstrate empirically that our collaboration scheme is able to significantly boost individual models' performance in the target domain from which the auxiliary data is sampled. At the same time, it can provably mitigate the negative impact of bad models on the collective. By design, our method adeptly accommodates heterogeneity in model architectures and substantially reduces communication overhead compared to typical collaborative learning methods.

An ideal length-extrapolatable Transformer language model can handle sequences longer than the training length without any long sequence fine-tuning. Such long-context utilization capability highly relies on a flexible positional embedding design. Upon investigating the flexibility of existing large pre-trained Transformer language models, we find that the T5 family deserves a closer look, as its positional embeddings capture rich and flexible attention patterns. However, T5 suffers from the dispersed attention issue: the longer the input sequence, the flatter the attention distribution. To alleviate the issue, we propose two attention alignment strategies via temperature scaling. Our findings improve the long-context utilization capability of T5 on language modeling, retrieval, and multi-document question answering without any fine-tuning, suggesting that a flexible positional embedding design and attention alignment go a long way toward Transformer length extrapolation.\footnote{\url{//github.com/chijames/Attention-Alignment-Transformer-Length-Extrapolation}}

Neural algorithmic reasoning is an emerging area of machine learning focusing on building models that can imitate the execution of classic algorithms, such as sorting, shortest paths, etc. One of the main challenges is to learn algorithms that are able to generalize to out-of-distribution data, in particular with significantly larger input sizes. Recent work on this problem has demonstrated the advantages of learning algorithms step-by-step, giving models access to all intermediate steps of the original algorithm. In this work, we instead focus on learning neural algorithmic reasoning only from the input-output pairs without appealing to the intermediate supervision. We propose simple but effective architectural improvements and also build a self-supervised objective that can regularise intermediate computations of the model without access to the algorithm trajectory. We demonstrate that our approach is competitive to its trajectory-supervised counterpart on tasks from the CLRS Algorithmic Reasoning Benchmark and achieves new state-of-the-art results for several problems, including sorting, where we obtain significant improvements. Thus, learning without intermediate supervision is a promising direction for further research on neural reasoners.

Distributional robustness is a promising framework for training deep learning models that are less vulnerable to adversarial examples and data distribution shifts. Previous works have mainly focused on exploiting distributional robustness in the data space. In this work, we explore an optimal transport-based distributional robustness framework in model spaces. Specifically, we examine a model distribution within a Wasserstein ball centered on a given model distribution that maximizes the loss. We have developed theories that enable us to learn the optimal robust center model distribution. Interestingly, our developed theories allow us to flexibly incorporate the concept of sharpness awareness into training, whether it's a single model, ensemble models, or Bayesian Neural Networks, by considering specific forms of the center model distribution. These forms include a Dirac delta distribution over a single model, a uniform distribution over several models, and a general Bayesian Neural Network. Furthermore, we demonstrate that Sharpness-Aware Minimization (SAM) is a specific case of our framework when using a Dirac delta distribution over a single model, while our framework can be seen as a probabilistic extension of SAM. To validate the effectiveness of our framework in the aforementioned settings, we conducted extensive experiments, and the results reveal remarkable improvements compared to the baselines.

Large language models (LLMs) recently exhibited remarkable reasoning capabilities on solving math problems. To further improve this capability, this work proposes Learning from Mistakes (LeMa), akin to human learning processes. Consider a human student who failed to solve a math problem, he will learn from what mistake he has made and how to correct it. Mimicking this error-driven learning process, LeMa fine-tunes LLMs on mistake-correction data pairs generated by GPT-4. Specifically, we first collect inaccurate reasoning paths from various LLMs and then employ GPT-4 as a "corrector" to (1) identify the mistake step, (2) explain the reason for the mistake, and (3) correct the mistake and generate the final answer. Experimental results demonstrate the effectiveness of LeMa: across five backbone LLMs and two mathematical reasoning tasks, LeMa consistently improves the performance compared with fine-tuning on CoT data alone. Impressively, LeMa can also benefit specialized LLMs such as WizardMath and MetaMath, achieving 85.4% pass@1 accuracy on GSM8K and 27.1% on MATH. This surpasses the SOTA performance achieved by non-execution open-source models on these challenging tasks. Our code, data and models will be publicly available at //github.com/microsoft/CodeT.

Adversarial robustness research primarily focuses on L_p perturbations, and most defenses are developed with identical training-time and test-time adversaries. However, in real-world applications developers are unlikely to have access to the full range of attacks or corruptions their system will face. Furthermore, worst-case inputs are likely to be diverse and need not be constrained to the L_p ball. To narrow in on this discrepancy between research and reality we introduce ImageNet-UA, a framework for evaluating model robustness against a range of unforeseen adversaries, including eighteen new non-L_p attacks. To perform well on ImageNet-UA, defenses must overcome a generalization gap and be robust to a diverse attacks not encountered during training. In extensive experiments, we find that existing robustness measures do not capture unforeseen robustness, that standard robustness techniques are beat by alternative training strategies, and that novel methods can improve unforeseen robustness. We present ImageNet-UA as a useful tool for the community for improving the worst-case behavior of machine learning systems.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification and link prediction. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. In this paper, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which involve identifying useful connections between unconnected nodes on the original graph, while learning effective node representation on the new graphs in an end-to-end fashion. Graph Transformer layer, a core layer of GTNs, learns a soft selection of edge types and composite relations for generating useful multi-hop connections so-called meta-paths. Our experiments show that GTNs learn new graph structures, based on data and tasks without domain knowledge, and yield powerful node representation via convolution on the new graphs. Without domain-specific graph preprocessing, GTNs achieved the best performance in all three benchmark node classification tasks against the state-of-the-art methods that require pre-defined meta-paths from domain knowledge.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.

北京阿比特科技有限公司