The rise of unifying frameworks that enable seamless interoperability of Large Language Models (LLMs) has made LLM-LLM collaboration for open-ended tasks a possibility. Despite this, there have not been efforts to explore such collaborative writing. We take the next step beyond human-LLM collaboration to explore this multi-LLM scenario by generating the first exclusively LLM-generated collaborative stories dataset called CollabStory. We focus on single-author ($N=1$) to multi-author (up to $N=5$) scenarios, where multiple LLMs co-author stories. We generate over 32k stories using open-source instruction-tuned LLMs. Further, we take inspiration from the PAN tasks that have set the standard for human-human multi-author writing tasks and analysis. We extend their authorship-related tasks for multi-LLM settings and present baselines for LLM-LLM collaboration. We find that current baselines are not able to handle this emerging scenario. Thus, CollabStory is a resource that could help propel an understanding as well as the development of techniques to discern the use of multiple LLMs. This is crucial to study in the context of writing tasks since LLM-LLM collaboration could potentially overwhelm ongoing challenges related to plagiarism detection, credit assignment, maintaining academic integrity in educational settings, and addressing copyright infringement concerns. We make our dataset and code available at \texttt{\url{//github.com/saranya-venkatraman/multi_llm_story_writing}}.
Diffeomorphic registration frameworks such as Large Deformation Diffeomorphic Metric Mapping (LDDMM) are used in computer graphics and the medical domain for atlas building, statistical latent modeling, and pairwise and groupwise registration. In recent years, researchers have developed neural network-based approaches regarding diffeomorphic registration to improve the accuracy and computational efficiency of traditional methods. In this work, we focus on a limitation of neural network-based atlas building and statistical latent modeling methods, namely that they either are (i) resolution dependent or (ii) disregard any data- or problem-specific geometry needed for proper mean-variance analysis. In particular, we overcome this limitation by designing a novel encoder based on resolution-independent implicit neural representations. The encoder achieves resolution invariance for LDDMM-based statistical latent modeling. Additionally, the encoder adds LDDMM Riemannian geometry to resolution-independent deep learning models for statistical latent modeling. We investigate how the Riemannian geometry improves latent modeling and is required for a proper mean-variance analysis. To highlight the benefit of resolution independence for LDDMM-based data variability modeling, we show that our approach outperforms current neural network-based LDDMM latent code models. Our work paves the way for more research into how Riemannian geometry, shape respectively image analysis, and deep learning can be combined.
We introduce Dream2Real, a robotics framework which integrates vision-language models (VLMs) trained on 2D data into a 3D object rearrangement pipeline. This is achieved by the robot autonomously constructing a 3D representation of the scene, where objects can be rearranged virtually and an image of the resulting arrangement rendered. These renders are evaluated by a VLM, so that the arrangement which best satisfies the user instruction is selected and recreated in the real world with pick-and-place. This enables language-conditioned rearrangement to be performed zero-shot, without needing to collect a training dataset of example arrangements. Results on a series of real-world tasks show that this framework is robust to distractors, controllable by language, capable of understanding complex multi-object relations, and readily applicable to both tabletop and 6-DoF rearrangement tasks.
Test-Time Adaptation (TTA) aims to adapt pre-trained models to the target domain during testing. In reality, this adaptability can be influenced by multiple factors. Researchers have identified various challenging scenarios and developed diverse methods to address these challenges, such as dealing with continual domain shifts, mixed domains, and temporally correlated or imbalanced class distributions. Despite these efforts, a unified and comprehensive benchmark has yet to be established. To this end, we propose a Unified Test-Time Adaptation (UniTTA) benchmark, which is comprehensive and widely applicable. Each scenario within the benchmark is fully described by a Markov state transition matrix for sampling from the original dataset. The UniTTA benchmark considers both domain and class as two independent dimensions of data and addresses various combinations of imbalance/balance and i.i.d./non-i.i.d./continual conditions, covering a total of \( (2 \times 3)^2 = 36 \) scenarios. It establishes a comprehensive evaluation benchmark for realistic TTA and provides a guideline for practitioners to select the most suitable TTA method. Alongside this benchmark, we propose a versatile UniTTA framework, which includes a Balanced Domain Normalization (BDN) layer and a COrrelated Feature Adaptation (COFA) method--designed to mitigate distribution gaps in domain and class, respectively. Extensive experiments demonstrate that our UniTTA framework excels within the UniTTA benchmark and achieves state-of-the-art performance on average. Our code is available at \url{//github.com/LeapLabTHU/UniTTA}.
Recent advancements have significantly enhanced the capabilities of Multimodal Large Language Models (MLLMs) in generating and understanding image-to-text content. Despite these successes, progress is predominantly limited to English due to the scarcity of high quality multimodal resources in other languages. This limitation impedes the development of competitive models in languages such as Arabic. To alleviate this situation, we introduce an efficient Arabic multimodal assistant, dubbed Dallah, that utilizes an advanced language model based on LLaMA-2 to facilitate multimodal interactions. Dallah demonstrates state-of-the-art performance in Arabic MLLMs. Through fine-tuning six Arabic dialects, Dallah showcases its capability to handle complex dialectal interactions incorporating both textual and visual elements. The model excels in two benchmark tests: one evaluating its performance on Modern Standard Arabic (MSA) and another specifically designed to assess dialectal responses. Beyond its robust performance in multimodal interaction tasks, Dallah has the potential to pave the way for further development of dialect-aware Arabic MLLMs.
Current image editing methods primarily utilize DDIM Inversion, employing a two-branch diffusion approach to preserve the attributes and layout of the original image. However, these methods encounter challenges with non-rigid edits, which involve altering the image's layout or structure. Our comprehensive analysis reveals that the high-frequency components of DDIM latent, crucial for retaining the original image's key features and layout, significantly contribute to these limitations. Addressing this, we introduce FlexiEdit, which enhances fidelity to input text prompts by refining DDIM latent, by reducing high-frequency components in targeted editing areas. FlexiEdit comprises two key components: (1) Latent Refinement, which modifies DDIM latent to better accommodate layout adjustments, and (2) Edit Fidelity Enhancement via Re-inversion, aimed at ensuring the edits more accurately reflect the input text prompts. Our approach represents notable progress in image editing, particularly in performing complex non-rigid edits, showcasing its enhanced capability through comparative experiments.
We present a new algorithm, Cross-Source-Context Place Recognition (CSCPR), for RGB-D indoor place recognition that integrates global retrieval and reranking into a single end-to-end model. Unlike prior approaches that primarily focus on the RGB domain, CSCPR is designed to handle the RGB-D data. We extend the Context-of-Clusters (CoCs) for handling noisy colorized point clouds and introduce two novel modules for reranking: the Self-Context Cluster (SCC) and Cross Source Context Cluster (CSCC), which enhance feature representation and match query-database pairs based on local features, respectively. We also present two new datasets, ScanNetIPR and ARKitIPR. Our experiments demonstrate that CSCPR significantly outperforms state-of-the-art models on these datasets by at least 36.5% in Recall@1 at ScanNet-PR dataset and 44% in new datasets. Code and datasets will be released.
We present COALA, a vision-centric Federated Learning (FL) platform, and a suite of benchmarks for practical FL scenarios, which we categorize into three levels: task, data, and model. At the task level, COALA extends support from simple classification to 15 computer vision tasks, including object detection, segmentation, pose estimation, and more. It also facilitates federated multiple-task learning, allowing clients to tackle multiple tasks simultaneously. At the data level, COALA goes beyond supervised FL to benchmark both semi-supervised FL and unsupervised FL. It also benchmarks feature distribution shifts other than commonly considered label distribution shifts. In addition to dealing with static data, it supports federated continual learning for continuously changing data in real-world scenarios. At the model level, COALA benchmarks FL with split models and different models in different clients. COALA platform offers three degrees of customization for these practical FL scenarios, including configuration customization, components customization, and workflow customization. We conduct systematic benchmarking experiments for the practical FL scenarios and highlight potential opportunities for further advancements in FL. Codes are open sourced at //github.com/SonyResearch/COALA.
Recent work has established an alternative to traditional multi-layer perceptron neural networks in the form of Kolmogorov-Arnold Networks (KAN). The general KAN framework uses learnable activation functions on the edges of the computational graph followed by summation on nodes. The learnable edge activation functions in the original implementation are basis spline functions (B-Spline). Here, we present a model in which learnable grids of B-Spline activation functions are replaced by grids of re-weighted sine functions. We show that this leads to better or comparable numerical performance to B-Spline KAN models on the MNIST benchmark, while also providing a substantial speed increase on the order of 4-8 times.
We introduce an open source high-quality Mandarin TTS dataset MSceneSpeech (Multiple Scene Speech Dataset), which is intended to provide resources for expressive speech synthesis. MSceneSpeech comprises numerous audio recordings and texts performed and recorded according to daily life scenarios. Each scenario includes multiple speakers and a diverse range of prosodic styles, making it suitable for speech synthesis that entails multi-speaker style and prosody modeling. We have established a robust baseline, through the prompting mechanism, that can effectively synthesize speech characterized by both user-specific timbre and scene-specific prosody with arbitrary text input. The open source MSceneSpeech Dataset and audio samples of our baseline are available at //speechai-demo.github.io/MSceneSpeech/.
Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.